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Abstract. The well-known ant colony optimization meta-heuristic is
applied to design a new command to line-of-sight guidance law. In this
regard, the lately developed continuous ant colony system is used to op-
timize the parameters of a pre-constructed fuzzy sliding mode controller.
The performance of the resulting guidance law is evaluated at different
engagement scenarios.

1 Introduction

The principle of Command to Line-of-Sight (CLOS) guidance law is to force the
missile to fly as nearly as possible along the instantaneous line joining the ground
tracker and the target, called the Line-of-Sight (LOS) [1,2,3,4,5,6,7,8,9]. Theo-
retically, the missile-target dynamic equations are nonlinear and time-varying,
partly because the equations of motion are described in an inertial frame, while
aerodynamic forces and moments are represented in the missile and target body
frames. Many different control techniques have been used to design different
CLOS guidance laws, examples of which are optimal control theory [3,6], feed-
back linearization [4], polynomial method [5], supervisory control [9], and so
on. However, these methods have resulted in rather complicated controllers, and
some of them require the knowledge of the maneuvering model of the target.

In recent years CLOS guidance laws based on Fuzzy Logic Control (FLC)
have been presented [7,8]. Fuzzy logic was proposed by Professor Lotfi Zadeh
in 1965, at first as a way of processing data by allowing partial set membership
rather than crisp membership. Soon after, it was proven to be an excellent choice
for many control system applications since it mimics human control logic. FLC
can model the qualitative aspects of human knowledge and reasoning processes
without employing precise quantitative analyses. It also possesses several advan-
tages such as robustness and being a model-free, universal approximation and a
rule-based algorithm. However, the stability analysis for general FLC systems is
still lacking. To cope with this deficiency, a combination of FLC and the well-
known Sliding Mode Control (SMC) has been proposed in recent years, called
Fuzzy Sliding Mode Control (FSMC) [10,11,12]. The stability of FSMC can be
proved in the Lyapunov sense [12]. This technique has been widely used in many
control applications, as well as the CLOS guidance problem [8]. The other ad-
vantage of the FSMC is that it has fewer rules than FLC. Moreover, by using
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SMC, the system possesses more robustness against parameter variations and
external disturbances.

There are some limitations to the development of fuzzy controllers, the most
important of which is the knowledge does not always completely exist and the
manual tuning of all the base parameters takes time. The lack of portability of
the rule bases when the dimensions of the control system change, makes the later
difficulty still more serious. To cope with these problems, the learning methods
have been introduced. The first attempt was made by Procyk and Mamdani in
1979 , with a ”self tuning controller” [13]. The gradient descent method was
used by Takagi and Sugeno in 1985 as a learning tool for fuzzy modeling and
identification [14]. It was used by Nomura, et al. in 1991 as a self tuning method
for fuzzy control [15].

The gradient descent method is appropriate for simple problems and real
time learning, since it is fast. But it may be trapped into local minima. Also
the calculation of the gradients depends on the shape of membership functions
employed, the operators used for fuzzy inferences as well as the selected cost
function. In 1998, Siarry and Guely used the well-known Genetic Algorithm to
tune the parameters of a Takagi-Sugeno fuzzy rule base [16]. The same problem
was solved by Nobahari and Pourtakdoust [17], using Continuous Ant Colony
System (CACS) [18], which is an adaptation of the well-known Ant Colony
Optimization (ACO) meta-heuristic to continuous optimization problems.

In this paper, CACS is used to optimize the parameters of a FSMC-CLOS
guidance law. The optimization problem is to minimize the average tracking error
obtained for 10 randomly generated engagement scenarios. In the simulation
of these scenarios, the proposed random target maneuver in [3] is used. The
performance of the optimal FSMC-CLOS, designed in this way, is then evaluated
at some other engagement scenarios, considering both maneuvering and non-
maneuvering targets. The simulation results show a good performance in both
tracking dynamics and the final miss distance.

2 Problem Formulation

In this section the three-dimensional CLOS guidance is formulated as a non-
linear time varying tracking problem. The three-dimensional pursuit situation
is depicted in Fig. 1. The origin of the inertial frame is located at the ground
tracker. The ZI axis is vertical upward and the XI − YI plane is tangent to the
Earth surface. The origin of the missile body frame is fixed at the missile center
of mass with the XI axis forward along the missile centerline.

Defining the LOS frame as depicted in Fig. 2, the three-dimensional guidance
problem can be converted to a tracking problem. According to the definition of
CLOS guidance law, reasonable choices for the tracking errors may be ∆σ =
σt −σm and ∆γ = γt − γm. The problem involves designing a controller to drive
[∆σ, ∆γ]T to zero. The same design algorithm will be applied for both azimuth
and elevation angle control. In the following the azimuth angle control is chosen
as an example.
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Fig. 1. Three-dimensional pursuit situation

Fig. 2. Definition of the tracking error

Assume that e(t) = ∆σ represents the azimuth loop tracking error. The
differential equation of the tracking error can be derived as [9]

ë = f(e, t) + (1/Rm(t))u(t) (1)

Where e = [e(t), ė(t)]T is the error state vector, Rm(t) is missile to tracker range,
u(t) = −am(t) is the control variable, and

f(e, t) = −(R̈m(t)/Rm(t))e(t) − (2Ṙm(t)/Rm(t))ė(t) + (1/Rm(t))at(t) (2)

3 Sliding Mode Control

Let s(e) = 0 denotes a hyper-surface in the space of the error state, which is
called the sliding surface. The purpose of the sliding mode control is to force the
error vector e approach the sliding surface and then move along it to the origin.
If the sliding surface is stable, the error e will die out asymptotically. In this
regard, let the sliding surface s be defined as follows

s(e, ė) =
(

d

dt
+ λ

)
e = ė + λe (3)
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where λ is a positive constant. It is obvious from Eq. (3) that keeping the states
of the system on the sliding surface will guarantee the tracking error vector e
asymptotically approach to zero. The corresponding sliding condition [19] is

1
2

d

dt
s2 = sṡ ≤ 0 (4)

The general control structure that satisfies the stability condition of the sliding
motion, can be written as [19]

u = û − Ksgn(s) (5)

where û is called the equivalent control law that is derived by setting s = ṡ = 0,
and K is a positive constant. The sliding condition can be satisfied as long as K
is chosen large enough [19].

3.1 Fuzzy Sliding Mode Control

As mentioned in section 1, the FSMC is a hybrid controller and inherits the ad-
vantages of both fuzzy and sliding mode controllers. The FSMC can be regarded
as a fuzzy regulator that controls the variable s approach to zero. Let s denote
the fuzzy variable of the universe of discourse, s. Then some linguistic terms
can be defined to describe the fuzzy variable s, such as ”zero”, ”positive large”,
”negative small”, etc. Each linguistic term expresses a certain situation in the
system. For example, s is ”zero” means that the state of system is on the sliding
surface or is near to the sliding surface. Such linguistic expressions can be used
to form fuzzy control rules as below

Rule 1: If s is NB, then u is PB
Rule 2: If s is NM, then u is PM
Rule 3: If s is ZO, then u is ZO
Rule 4: If s is PM, then u is NM
Rule 5: If s is PB, then u is NB

(6)

where u denotes the fuzzy variable of the control signal u, NB denotes ”Negative
Big”, NM denotes ”Negative Mid”, ZO denotes ”Zero”, PM denotes ”Positive
Mid”, and PB denotes ”Positive Big”. Each linguistic term is described by an
associated membership function as shown in Fig. 3. In conventional fuzzy con-
troller design, these membership functions are tuned by a trial-and-error proce-
dure, based on certain physical sense or designer’s experiences.

3.2 Definition of FSMC Design as an Optimization Problem

The FSMC considered here, involves a SISO fuzzy inference system with the
variable s as the input, and the variable u as the output. The design problem is
defined as finding the optimum values of the membership functions parameters.
The more fuzzy terms are defined, the more fuzzy rules will be requested for
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Fig. 3. Definition of fuzzy membership functions

Fig. 4. Fuzzy sliding surface of a second order system

completeness. In this paper, five fuzzy terms are proposed for the measure of s,
as follows

s ={NB, NM, ZO, PM, PB} (7)

One may choose more fuzzy terms if required. The associated five fuzzy terms
for control energy are defined in a similar way as

u ={NB, NM, ZO, PM, PB} (8)

A scaling factor will be used to normalize the fuzzy set. The fuzzy sliding surface
of a second order system is shown in Fig. 4, where δ represents the scaling factor.
For normalized fuzzy sets, SNB = −1, SPB = 1 and SZO = 0 can be defined. The
maximum control energy Umax is also bounded by physical limitations, that is
UNB = −1 and UPB = 1 can also be defined. If the symmetry of fuzzy terms
corresponding to s and u is assumed, the remaining design factors of the fuzzy
system are the values of SPM, UPM, and the scaling factor δ. The optimal design
problem of the FSMC then can be formulated as: to determine SPM, UPM, δ and
the positive constant λ such that a given cost function is optimized.

4 Ant Colony Optimization

Ant algorithms were inspired by the observation of real ant colonies. An impor-
tant and interesting behavior of ant colonies is their foraging behavior, and in



100 H. Nobahari and S.H. Pourtakdoust

particular, how ants can find the shortest path without using visual cues. While
walking from the food sources to the nest and vice versa, ants deposit on the
ground a chemical substance called pheromone which makes a pheromone trail.
Ants use pheromone trails as a medium to communicate with each other. They
can smell pheromone and when they choose their way, they tend to choose paths
with more pheromone. The pheromone trail allows the ants to find their way
back to the food source or to the nest. Also, the other ants can use it to find the
location of the food sources, which are previously found by their nest mates.

4.1 Ant Colony System

Ant Colony System (ACS) is one of the first discrete algorithms proposed based
on ACO. At first it was applied to the well-known Traveling Salesman Problem
(TSP) which is a discrete optimization problem. In this part we will shortly
review the basic idea of ACS. Then in the subsequent part, the continuous version
of ACS will be presented.

Ant Colony System uses a graph representation, like as the cities and the
connections between them in TSP. In addition to the cost measure, each edge has
also a desirability measure, called pheromone intensity. To solve the problem,
each ant generates a complete tour by choosing the nodes according to a so
called pseudo-random-proportional state transition rule, which has two major
features. Ants prefer to move to the nodes, which are connected by the edges
with a high amount of pheromone, while in some instances, their selection may
be completely random. The first feature is called exploitation and the second
one is a kind of exploration. While constructing a tour, ants also modify the
amount of pheromone on the visited edges by applying a local updating rule.
It concurrently simulates the evaporation of the previous pheromone and the
accumulation of the new pheromone deposited by the ants while they are building
their solutions. Once all the ants have completed their tours, the amount of
pheromone is modified again, by applying a global updating rule. Again a part of
pheromone evaporates and all edges that belong to the global best tour, receive
additional pheromone conversely proportional to their length.

4.2 Continuous Ant Colony System

In this part, the lately developed Continuous Ant Colony System (CACS) is
introduced. The interested readers can refer to [17,18] to find more details.

A continuous optimization problem is defined as finding the absolute mini-
mum of a positive non-zero continuous cost function f(x), within a given interval
[a, b], in which the minimum occurs at a point xs. In general f can be a multi-
variable function, defined on a subset of IRn delimited by n intervals [ai, bi],
i = 1, ..., n.

Continuous Ant Colony System (CACS) has all the major features of ACS,
but certainly in a continuous frame. These are a pheromone distribution model,
a state transition rule, and a pheromone updating rule. In the following these
features are introduced.
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Continuous Pheromone Model. Although pheromone distribution has been
first modeled over discrete sets, like the edges of TSP, in the case of real ants,
pheromone deposition occurs over a continuous space. The ants aggregation
around the food source causes the most pheromone intensity to occur at the
food source position. Then increasing the distance of a sample point from the
food source will countinuously decreases its pheromone intensity. CACS mod-
els the pheromone intensity, in the form of a normal Probability Distribution
Function (PDF):

τ(x) = e
−

(x − xmin)2

2σ2 (9)

where xmin is the best point found within the interval [a, b] from the beginning of
the trial and σ is an index of the ants aggregation around the current minimum.

State Transition Rule. In CACS, pheromone intensity is modeled using a
normal PDF, the center of which is the last best global solution and its variance
depends on the aggregation of the promising areas around the best one. So it
contains exploitation behavior. In the other hand, a normal PDF permits all
points of the search space to be chosen, either close to or far from the current
solution. So it also contains exploration behavior. It means that ants can use a
random generator with a normal PDF as the state transition rule to choose the
next point to move to.

Pheromone Update. During each iteration, ants choose their destinations
through the probabilistic strategy of Eq. (9). At the first iteration, there is no
knowledge about the minimum point and the ants choose their destinations only
by exploration. It means that they must use a high value of σ, associated with
an arbitrary xmin, to approximately model a uniform distribution function. Dur-
ing each iteration pheromone distribution over the search space will be updated
using the acquired knowledge of the evaluated points by the ants. This process
gradually increases the exploitation behavior of the algorithm, while its explo-
ration behavior will decrease. Pheromone updating can be stated as follows: The
value of objective function is evaluated for the new selected points by the ants.
Then, the best point found from the beginning of the trial is assigned to xmin.
Also the value of σ is updated based on the evaluated points during the last iter-
ation and the aggregation of those points around xmin. To satisfy simultaneously
the fitness and aggregation criteria, a concept of weighted variance is defined as
follows:

σ2 =

k∑
j=1

1
fj − fmin

(xj − xmin)2

k∑
j=1

1
fj − fmin

(10)

where k is the number of ants. This strategy means that the center of region
discovered during the subsequent iteration is the last best point and the narrow-
ness of its width depends on the aggregation of the other competitors around
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the best one. The closer the better solutions get (during the last iteration) to
the best one, the smaller σ is assigned to the next iteration.

During each iteration, the height of pheromone distribution function increases
with respect to the previous iteration and its narrowness decreases. So this strat-
egy concurrently simulates pheromone accumulation over the promising regions
and pheromone evaporation from the others, which are the two major charac-
teristics of ACS pheromone updating rule.

5 Numerical Results

In this section CACS is applied to optimize the parameters of a FSMC-CLOS
guidance law, and the performance of the designed optimal guidance law is eval-
uated through different engagement scenarios. Ten different randomly generated
engagement scenarios are used to evaluate each design point discovered by the
ants. The cost function is defined as the average of the normalized tracking er-
rors over the considered engagement scenarios. The normalized tracking error is
defined as follows

rn =
1
tf

∫ tf

0
r(t)dt (11)

where r(t) is the distance between the missile and the LOS at time t. The average
of the normalized tracking errors is defined as follows

y =
(

1
10

(r2
n1

+ r2
n2

+ ... + r2
n10

)
) 1

2

(12)

5.1 Mathematical Model of Missile and Target

The proposed equations of motion in [4] are used to simulate the behavior of
missile and target. The acceleration limits of missile and target are 20(g) and
5(g), respectively. Other data used in simulations are the same as those in [4].

A random target maneuver similar to that proposed in [3], is utilized in
simulations. It is assumed that target maneuvers about the LOS in a random
fashion defined by RMS and bandwidth of the target acceleration. A stochastic
representation of this maneuver will be generated by passing white noise, nt,
through a third order Butter-worth filter (Fig. 5). The values of Kt and ωt, used
in simulations, are 500(m/s2) and 1(rad/s), respectively.

Fig. 5. Stochastic target maneuver model
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5.2 Generation of the Random Engagement Scenarios

The cost function is defined based on the average performance obtained over
10 randomly generated engagement scenarios. These scenarios are pre-generated
because the same situations are needed to evaluate different design points. In
the generation of these primary scenarios, the following constraints are made

3000 ≤ R0t ≤ 5000 R0m = 50 m
−180◦ ≤ σ0t ≤ 180◦ −5◦ ≤ σ0m − σ0t ≤ 5◦

20◦ ≤ γ0t ≤ 70◦ −5◦ ≤ γ0m − γ0t ≤ 5◦

300 ≤ V0t ≤ 500 V0m = 150m/s
−45◦ ≤ ψ0t ≤ 45◦ ψ0m = σ0m

−20◦ ≤ θ0t ≤ 20◦ θ0m = γ0m

In addition to the pre-generated initial conditions, for each scenario, two long
lists of normalized zero-mean Gaussian random numbers are also generated and
stored as the inputs of the target maneuver model, corresponding to aty and atz .

5.3 Optimization Results

The proposed CACS works based on the search and evaluation of different points
in the solution space in a stochastic intelligent manner. The evaluation is done
through the simulation of the missile-target engagement at the primary scenarios.
The optimization problem can be defined as: find the values of SPM, UPM, δ,
and λ such that the cost function, y, is minimized. The boundaries of the search
space are defined as follows

0 < SPM < 1, 0 < UPM < 1, 0 < δ < 1, 0 < λ < 10

Fig. 6 shows the history of y for different number of ants. The best results
have obtained using 10 ants which is consistent with our previous results in

number of evaluations

y
(m
)

0 250 500 750 1000
50

100

150

200

250

300
Number of Ants = 8
Number of Ants = 10
Number of Ants = 12

Fig. 6. History of the cost function as shown for different number of ants
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[17,18]. The optimum values of the parameters obtained after 1000 evaluations
are: SPM = 0.0074, UPM = 0.9937, δ = 0.3029, and λ = 2.74.

5.4 Evaluation of the Optimal Design

The optimal set of parameters obtained based on the primary engagement sce-
narios, is again evaluated over two other scenarios. The two scenarios proposed
in [4,8,9] are considered here. The first one represents a non-maneuvering target,
while in the second one the target maneuvers with aty = 5g and atz = −g for
the first 2.5 sec., and then aty = −5g and atz = 5g until interception. The initial
condition data used to simulate these scenarios is given in table 1.

Figures 7 and 8 show the dynamic simulation results. It is clear that the new
optimal FSMC-CLOS guidance law, designed using CACS, successfully drives
the tracking error and as a result, the miss distance to zero. The obtained values
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Table 1. The initial condition used for different flight scenarios

Parameter Unit Scenario 1 Scenario 2

xt(0), yt(0), zt(0) m 4000, −400, 2000 2500, 5361.9, 1000
ẋt(0), ẏt(0), żt(0) m/s −400, 100, 0 0, −340, 0
ψt(0), θt(0) deg 165.96, 0 −90, 0
xm(0), ym(0), zm(0) m 100, −10, 50 14.32, 39.34, 3.36
ẋm(0), ẏm(0), żm(0) m/s 100, −10, 50 70.84, 151.92, 28.32
ψm(0), θm(0) deg −5.71, 26.56 65, 9.59
∆σ(0),∆γ(0) deg 0, 0 −5, 5

of miss distance for these two scenarios are 5.40 m and 3.96 m, respectively.
The obtained results verify the ability of CACS to solve practical optimization
problems such as guidance and control systems design.

6 Conclusion

In this paper the Continuous Ant Colony System (CACS), which is based on
the well-known Ant Colony Optimization meta-heuristic was applied to design
an optimal FSMC-CLOS guidance law. The optimization was done for differ-
ent number of ants. The evaluation of each discovered point within the design
space was done through the simulation of missile-target engagement at a number
of randomly generated scenarios. The cost function was defined as the average
of normalized tracking errors, corresponding to each scenario. Then the perfor-
mance of the resulting optimal FSMC-CLOS guidance law was studied through
some other new scenarios. Simulation results indicate a good performance for
the new guidance law. This again shows the ability of CACS to solve practical
optimization problems. The main advantage of CACS with respect to the other
meta-heuristics such as Genetic Algorithm is its simplicity which is mainly due to
its simple structure. CACS has only one control parameter which is the number
of ants. This makes the parameter setting easier than many other optimization
methods.
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