Master Program in Space Engineering

16th November 2015
Table of Contents

Chapter 1: Department of Aerospace Engineering

- Advanced Automatic Control, 45710 .. 4
- Advanced Mathematics I, 45510 ... 6
- Advanced Orbital Mechanics, 45784 .. 9
- Application of Remote Sensing, 45777 .. 13
- Attitude and Orbit Determination, 45783 ... 16
- Control Systems Design, 45730 ... 19
- Flight Simulation, 45745 .. 23
- Fuzzy control, 45735 ... 24
- Guidance and Navigation I, 45715 .. 26
- Heuristic Optimization Algorithms, 45770 ... 28
- Launch Vehicle System Design, 45781 .. 31
- Modeling of Aerospace Dynamic Systems, 45747 .. 34
- Missile Flight Dynamics, 45725 ... 36
- Multivariable Control, 45750 .. 39
- Neural Networks, 45775 ... 42
- Optimal Control I, 45765 ... 44
- Optimal Control II, 45766 .. 47
- Satellite System Design, 45782 ... 50
- Space Propulsion, 45779 .. 54
- Space Structures Materials, 45932 .. 56
- Spacecraft Dynamics and Control, 45780 ... 59
- Space Systems Engineering, 45785 .. 62
- System Identification, 45749 ... 66

Appendix A- List of all AE Courses .. 69
Chapter 1: Department of Aerospace Engineering

The Department of Aerospace Engineering at Sharif University of Technology initiated its degree programs in 1987 as the Aerospace Engineering Group, part of the Mechanical Engineering Department. In 1999, the Aerospace Engineering Group separated from the Mechanical Engineering Department and continued its activities as an independent department.

In accordance with the general SUT philosophy, the faculties in Aerospace Engineering are a select group from the world’s most prestigious universities providing an atmosphere of expertise and collaboration that is unparalleled in other universities. Our faculty works closely with those in Mechanical Engineering, Applied Physics, and Electrical Engineering.

The graduate programs on M.Sc. and PhD levels were established in 1993 and 1996, respectively. Since then, these programs have been continuously offered in four subjects of Flight Dynamics and Control, Aerodynamics, Propulsion and Structure. The master program in Space Engineering was also established in 2010.

Professors of the space engineering division perform their research activities in different fields including: space technologies development; space missions design and analysis; attitude and orbit dynamic, control, and determination; measurement systems in space; space navigation; satellite and spacecraft system design; etc.

This document introduces the master program in Space Engineering for interested students and other parties.
Chapter 2: Overall Program

This chapter presents an overview on the master program in Space Engineering. The general requirements of this program are as in Table 1. Tables 2 and 3 present the list of main and elective technical courses, respectively.

Table 1 General Requirements of Space Engineering division

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>At least four courses from Table 2</td>
<td>12</td>
</tr>
<tr>
<td>At least three courses from Table 3</td>
<td>9</td>
</tr>
<tr>
<td>M.Sc. Thesis</td>
<td>6</td>
</tr>
<tr>
<td>M.Sc. seminar or another course from Table 3</td>
<td>2</td>
</tr>
<tr>
<td>Minimum required units for graduation</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 2 Main Technical Courses

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft Dynamics and Control</td>
<td>45780</td>
</tr>
<tr>
<td>Satellite System Design</td>
<td>45782</td>
</tr>
<tr>
<td>Launch Vehicle System Design</td>
<td>45781</td>
</tr>
<tr>
<td>Modeling of Aerospace Dynamic Systems</td>
<td>45747</td>
</tr>
<tr>
<td>Advanced Orbital Mechanics</td>
<td>45784</td>
</tr>
</tbody>
</table>
Table 3 Elective Technical Courses

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Control</td>
<td>45760</td>
</tr>
<tr>
<td>Advanced Automatic Control</td>
<td>45710</td>
</tr>
<tr>
<td>Applications of Remote Sensing</td>
<td>45777</td>
</tr>
<tr>
<td>Attitude and Orbit Determination</td>
<td>45783</td>
</tr>
<tr>
<td>Control Systems Design</td>
<td>45730</td>
</tr>
<tr>
<td>Digital Control</td>
<td>45755</td>
</tr>
<tr>
<td>Flight Simulation</td>
<td>45745</td>
</tr>
<tr>
<td>Fuzzy Control</td>
<td>45735</td>
</tr>
<tr>
<td>Guidance & Navigation 1</td>
<td>45715</td>
</tr>
<tr>
<td>Guidance & Navigation 2</td>
<td>45716</td>
</tr>
<tr>
<td>Heuristic Optimization Algorithms</td>
<td>45770</td>
</tr>
<tr>
<td>Liquid Rocket Engine Design</td>
<td>45428</td>
</tr>
<tr>
<td>Missile Flight Dynamics</td>
<td>45725</td>
</tr>
<tr>
<td>Multivariable Control</td>
<td>45750</td>
</tr>
<tr>
<td>Neural Networks</td>
<td>45775</td>
</tr>
<tr>
<td>Nonlinear System Analysis</td>
<td>45748</td>
</tr>
<tr>
<td>Optimal Control 1</td>
<td>45765</td>
</tr>
<tr>
<td>Optimal Control 2</td>
<td>45766</td>
</tr>
<tr>
<td>Space Propulsion</td>
<td>45779</td>
</tr>
<tr>
<td>Space Structures Materials</td>
<td>45932</td>
</tr>
<tr>
<td>Space Systems Engineering</td>
<td>45785</td>
</tr>
<tr>
<td>System Identification</td>
<td>46749</td>
</tr>
</tbody>
</table>

Max. one course from:
- Other technical courses in the group,
- Technical courses in other groups,
- Any other course approved by the group.
Chapter 3: Syllabus of the Courses

In this chapter, syllabus of each course is presented, in details.

Advanced Automatic Control, 45710

Prerequisite: Automatic Control, 45135; Advanced Mathematics I, 45510

Course Objectives:
This course is intended for senior/graduate students on linear and multivariable control system design. The students will utilize the time-domain state space representation, which is a convenient way to model and analyze systems with multiple inputs and outputs. Mathematical modeling, state space formulation, design procedure and analysis of control systems are covered throughout the course.

Syllabus:

1. Linear Algebra
 - Basics and Vector Spaces
 - Functions of a Square Matrix
 - Systems of Linear Equations
 - Inversion Lemma and Cayley Hamilton Theorem

2. Linear Systems
 - State Variable and Linearization
 - State Space Representation
 - State Transition Matrix
 - Similarity Transformations
 - Modal Matrix and Modal Decomposition
 - (Block) Diagonalization
 - Companion and Jordan Canonical Forms
 - Generalized Eigenvectors

3. Controllability and Observability
 - Controllability and Observability Concepts
 - Internal Stability
 - Controllability Indices
 - Observability Indices
 - Duality in Linear Systems
 - Output Controllability

4. Realization Theory
 - Introduction
 - Minimal Realization
 - Controller/ Controllability Canonical Realization
 - Observer/ Observability Canonical Realization
 - Parallel and Series Systems
• Realization of Multi-Input Multi-Output Systems

5. Stability
• Definitions
• Lyapunov Theory
• Generalized Energy Function
• Stability of LTI (Linear Time Invariant) Systems

6. State Feedback Techniques
• Output and State Feedback
• State Feedback Design (Bass and Gura, Ackermann’s Formula, Controller Canonical)
• Regulator Design
• Tracker Design (Integral Control Technique

7. State Estimators
• Observer Dynamics
• Full-Order Observer Design
• Reduced-Order Observer Design
• Feedback from Estimated States

8. Optimal Control of Linear Systems
• Definitions
• Matrix Riccati Equation
• Optimal Control Formulation by Quadratic Integral Criterion (Lyapunov’s 2nd Method)

Course Outcome:
At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Linearization and State Space Formulation
2. Controllability, Observability and Realization of Dynamic Systems
3. Stability Analysis
4. State Feedback Controller Design
5. Observer Design
6. (LQR) Linear Quadratic Regulator Design

References:
Advanced Mathematics I, 45510

Course Objectives:

This course starts with an introduction to the vector space, linear transformations and some applications of linear space. In the second section, the metric space and normed space are discussed, we introduced some norms, Banach space and fixed point theorem and some application of this theorem in engineering problems. Inner product space and orthogonality theorem and application of this theorem are presented in another section. Operator equations, Sturm-Liouville theorem and minimum functional theorem, variational formulations of boundary value problems are discussed in a fourth section. In the final section, we introduced approximated methods for boundary value problems such as the Ritz, Bubnov-Galerkin, Least Squares, Kantro维奇 and Terfftetz methods.

Syllabus:

1. Vector Space and its Application
 - General Comments and Notations
 - Supremum and Infimum of Sets
 - Functions
 - The Field of Scalars
 - Linear Vector Spaces and Subspaces
 - Linear Dependence and Independence of Vectors
 - Span, Basis and Dimension
 - Linear Transformations
 - Linear, Bilinear, and Quadratic Forms
 - Kernel, Image and Nullity
 - Some Applications of Linear Space

2. Normed Space and its Applications
 - Function Space and Metric Space
 - Holder and Minkowski Inequalities
 - Normed Space and Definition of Different Norms
 - Continuous and Bounded Linear Transformations
 - Complete Normed Space: Banach Space
 - Fixed Point Theorem
 - Application of a Fixed Point Theorem for Solving of Linear Equations
 - Application of a Fixed Point Theorem for Solving of Linear Differential Equations
• Application of a Fixed Point Theorem for Solving of Integral Equations
• Linear and Nonlinear Initial Value Problems
• Application of Green’s Function for Boundary Value Problems
• Some Practical Problems

3. Inner Product Space and its Applications
• Inner Product Space and Cauchy-Schwarz Inequality
• Orthogonal Vectors, Complements and Projection
• Hilbert space
• Orthonormal Bases and Generalized Fourier Series
• Gram-Schmidt Theorem
• Orthogonal Projection Theorem
• Legendre, Laguerre, Hermite Polynomials
• Best Approximation in Hilbert Space
• Optimal Estimation of Random Signals

4. Variational Formulations of Boundary Value Problems
• Operator Equation
• Representation of Linear Functionals
• Self-adjoint Operators
• Sturm-Liouville Theorem
• The Minimum Functional Theorem
• Concepts from Variational Calculus
• Natural and Essential Boundary Conditions
• Non-homogeneous Boundary Conditions
• Problem with Equality Constraints and Lagrange Multipliers
• The Penalty Function Method
• Optimal Control Problems

5. Variational Methods of Approximation
• The Ritz Method
• Convergence and Stability
• The Weighted-Residual Method
• The Bubnov-Galerkin Method
• The Method of Least Squares
• The Kantrovich Method
• The Terfetz Method

Course Outcome:

At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Linear space and its application in many engineering problems such as eigenvalue problem, linear differential equations, and so on,

2. Metric space, normed space, orthogonally theorem, and best approximation in Hilbert space and its application
3. The minimum functional theorems and variational methods of approximation for solving of boundary value problems and its application.

References:

Advanced Orbital Mechanics, 45784

Prerequisite: Orbital Mechanics, 45407

Course Objectives:

The detailed definition of the different aspects of advanced topics in orbital dynamics has been provided in this course. After introducing the general concept of time and coordinate systems in space engineering applications, the three-dimensional interplanetary trajectories are presented. The advanced concepts of multiple planetary flybys and utilizing the atmosphere of planets for maneuvering in space are introduced.

The most commonly used orbital representation parameters are classical orbital elements. However, they are not efficient for many problems or are singular for some orbits, for instance circular orbits and equatorial orbits. Therefore, other orbital representation parameters such as Equinoctial Elements, Delaunay, Poincare, and Polar-nodal variables are presented. Then, the perturbed equations of motion in Cartesian coordinate system and the perturbation sources are introduced. Thereafter, the equation of variation in orbital elements and other orbital representation parameters are presented. The perturbation equations can also be used for orbit design. The orbit design is one of the most useful fields in space mission designs. After a review of special orbits, such as Molniya, Sun-synchronous, repeating ground track, and frozen orbits, the orbit design for earth coverage and ground station visibility is explained. Then, the constellation design approaches and some general constellation structures are introduced.

All of the previous subjects were based on the two-body and perturbed two-body problems. However, the three-body problem can better explain some orbital phenomenon and nowadays have been used for many applied space missions. After a review of the dynamics and equations of motion, the methods for finding periodic and quasi-periodic orbits and also transfer trajectories in restricted three-body problem are explained. Afterward, the more-body problems and also low thrust trajectory design in general are introduced. Different aspects of formation flying dynamics are also provided in this course. Starting with relative orbital dynamics and formation control problem, the tethered dynamics and control of formation flying spacecrafts are discussed.
Syllabus:

1. Time and Coordinate Systems
 - Solar, Sidereal and Universal Time
 - Julian Date
 - ECI, True and Mean of Date Inertial reference frame
 - ECEF, WGS84 Coordinate System
 - Transformation Between Coordinate Systems
 - Universal formulations

2. Three-Dimensional Interplanetary Trajectory
 - Launch Window
 - Multiple Planetary Flybys
 - Aero-Gravity Assist
 - Optimal Trajectory and Optimal Transport

3. Orbital representations (Elements)
 - Classical Orbital Elements
 - Equinoctial Elements
 - Delaunay Variable
 - Poincare variables
 - Polar-nodal variables

4. Orbital Perturbation
 - Special
 - Cowell’s Method

5. Orbit Design
 - General
 - Variation of Parameters
 - Lagrange Planetary Equations
 - Gaussian Formulation
 - Hamilton’s Formulation
 - Propagator
 - Kosai’s Method
 - Brouwer’s Method
 - Operational Techniques (SGP, SGP4, SDP4, …)
 - Semi-Analytical Solutions

6. Three body problem
 - Equations of Motion
 - Circular 3BP
Chapter 3: Syllabus of the Courses

1. Elliptic 3PB
2. Phase Space Structure
3. Periodic and Quasi Periodic and Associated Un/Stable Manifolds
4. Transfer Trajectory (TPBVP)
5. Station Keeping
6. Coupled 3BP
7. Flyby
8. Relative Orbit Control Methods
9. Tethered Satellites
10. Three-body problem
11. Natural Formation
12. Non-Natural Formation
13. Formation Keeping
14. Continuous, Discrete, Optimal

7. Formation flying
 1. Two-body problem
 a. Relative Motion (Cartesian Coordinate, Orbital Elements)
 b. Linearized Relative Orbit Motion
 2. Three-body problem
 3. Natural Formation
 4. Non-Natural Formation
 5. Formation Keeping
 6. Continuous, Discrete, Optimal

8. More-Body Problems
 1. 4BP
 2. 5BP

9. Low Thrust Trajectory
 1. Formulations (2BP/3BP)
 2. Optimization

Course Outcome:
This course can develop the students’ understanding of the following areas in orbital dynamics:

1. Three-dimensional interplanetary trajectories
2. Orbital perturbations and propagation methods
3. Restricted three-body problem
4. Orbit and constellation design
5. Satellite formation and relative motion of two spacecraft in proximity
6. Space trajectories optimization

References:
Application of Remote Sensing, 45777

Course Objectives:

This course intends to give students an overview of remote sensing concepts, the ways in which remote sensing systems are used to acquire data, how these data may be analyzed digitally and how the information is used in studies of the natural and human environments. At the end of the course, students should have a good knowledge of the different types of remote sensing imagery that are available and the digital processing and analysis procedures that are used for different applications. Students should also be capable of undertaking basic computer-assisted image analysis, use of aerial image for construction of Map, Interpretation of satellite images and other topics.

Syllabus:

1. Introduction to Remote Sensing
 - The Basic Concepts of Remote Sensing
 - Airborne and Space Borne Sensors
 - Passive and Active Remote Sensing
 - Applications of Remote Sensing
 - A Brief History of Remote Sensing

2. Basic Principles of Electromagnetic Radiation
 - Electromagnetic Waves Spectrum
 - Energy Sources and Electromagnetic Radiation
 - Energy Interactions in the Atmosphere
 - Energy Interactions with Earth Surface and Features
 - Spectral Reflection Curves

3. Remote Sensing Platforms
 - Classification of Remote Sensing from the Perspective of Distance
 - Principles of Satellite Motion
 - Type of Orbits
 - Ground Track
 - Resolution Types
 - Remote Sensing Satellites

4. Remote Sensing Sensors
 - Classification of Remote Sensors
Chapter 3: Syllabus of the Courses

1. Spatial, Spectral, Radiometric, and Temporal Resolutions
2. Quality of Image in Optical Systems
3. Photographic and Television Cameras
4. Hyper-Spectral Imager
5. Microwave Sensors Antenna
6. Satellite-born Microwave Radiometers
7. Altimeters
8. Side-Looking Airborne Radar (SLAR)
9. Synthetic Aperture Radar

5. Photogrammetry in Visible band
 - An Introduction to Photogrammetry
 - Geometric Transformations
 - Photogrammetric Measurements
 - The Geometry of Image
 - Error Corrections

6. Satellite Image Interpretation
 - Multispectral Scanners
 - Thermal Scanners
 - Features of the Remote Sensing Satellites
 - Geometric Corrections
 - Ground Control Points and Co-Registration
 - Atmospheric Corrections
 - Concepts of Color
 - Contrast Stretching
 - Filtering and Edge Enhancement
 - Image Classification
 - Image Transformations
 - Image Processing Software
 - Contrast Stretching
 - Histogram
 - Thresholding

Course Outcome:

Students who successfully complete the course will demonstrate the following outcomes:

1. Become conversant in the terminology of remote sensing
2. Fundamental understanding of different remote sensors
3. Become familiar with aerial and satellite image interpretation
4. Become familiar with photogrammetry and its applications
References:

Chapter 3: Syllabus of the Courses

Attitude and Orbit Determination, 45783

Prerequisite: Dynamics, 45113; Orbital Mechanics, 45407

Course Objectives:

This course provides an overview of various attitude and orbital determination methods and algorithms for spacecrafts. The course starts with a short review of attitude parameterization methods, attitude kinematics, attitude dynamics, and orbital dynamics. It continues with the introduction of some sensors used in attitude determination such as rate gyros, earth sensor, horizon sensor, sun sensor, magnetometers, star trackers etc. Also, additional sensors used for orbit determination such as GPS, Radars and Ground tracker will be discussed. Subsequently, deterministic attitude determination methods such as TRIAD, QUEST, Markley’s SVD and Mortari’s ESOQ and ESOQ2 will be discussed. Also, some classical approaches for deterministic orbit determination, like the Gauss and Laplace methods will be presented. Probability and Stochastic Processes will be shortly reviewed in order to create a foundation for state estimation. Kalman filtering theory will be reviewed, as well as the extension of this theory to nonlinear dynamic systems – the Extended Kalman Filter (EKF). This theoretical foundation will be used to develop an Extended Kalman Filter for attitude and orbit determination.

Chapter four provides more details about star sensors, camera modeling, star catalogue, centroiding algorithm and star identification methods. In continue, attitude estimation by integration of attitude sensors and rate gyros for continues attitude determination will be presented. In next chapter, methods of orbit estimation by using of ground stations for spacecraft tracking will be discussed. Finally, more advanced topics for augmented attitude and orbit estimation method by using of magnetometers, starlight and GPS will be discussed.

Syllabus:

1. Introduction
 - Introduction to Space Navigation and Its History
 - Attitude Representation, Euler Angles, Quaternion’s, Rotation Vector
 - Attitude Dynamics, Numerical Integration
 - Classical Orbital Parameters, Orbit Mechanics, Analytical Solutions
 - Introduction to Solar System
 - Standard Coordinate Systems and Time
Chapter 3: Syllabus of the Courses

2. Spacecraft Sensors
- Rate Gyros and Accelerometers
- Earth Sensor and Horizon Sensor
- Sun Sensor
- Star Sensor
- Magnetometers and Flux Gates
- Ground Sites and Onboard Radio Systems
- GPS

3. Introduction to Estimation
- Linear and Nonlinear Least Squares, Recursive Least Squares
- Batch Output Error Method
- Attitude Estimation from Vector Observation (TRIAD, QUEST, SVD, ESOQ)
- Orbit Estimation (Gauss and Laplace Methods, Nonlinear Least Squares)
- Review of Random Variables and Kalman Filter

4. Attitude Estimation
- Star Modeling and Star Catalogue
- Camera Modeling and Star Image Centroiding
- Star Identification Method (Angle, Triangle)
- Lost in Space Mode and Search Less Methods
- Attitude Estimation Using Star Sensor
- Attitude Estimation Using Magnetometers and Earth Sensors and Sun Sensors
- Continues Attitude Estimation by Using Rate Gyros and Other Sensors

5. Orbit Estimation
- GPS Observations
- Position and Velocity Estimation by Using GPS Observations
- Spacecraft Tracking by Using of Range, Range Rate and LOS Observations
- Spacecraft Tracking by Bearing Only Measurements and Observability Analyses
- Spacecraft Tracking by Range Measurements and Observability Analyses
- Onboard Orbit Estimation
- Position Estimation Using Near Earth Planets
- Continues Position and Velocity Estimation Using Kalman Filter

6. Joint Attitude and Position Estimation
- Attitude and Position Observability Analysis from Vector Measurements
- Attitude and Position Estimation from Magnetometers Measurements
- GPS Ambiguity Resolution
• Attitude and Position Estimation by Using Three GPS Observations
• Starlight Method for Interplanetary Missions
• Relative Spacecraft Attitude and Position Estimation

Course Outcome:
In this course, students will be familiarized with various attitude and orbit representation parameters, and will able to realize the advantages and disadvantages of these parameters. In addition, the students will be accustomed to different sensors and roll of each sensor in attitude and orbit determination. The students who successfully pass the course will be able to implement and test different algorithms for attitude and orbit estimation and can develop their studies and abilities in this field.

References:
Control Systems Design, 45730

Course Objectives:
This course has been designed to familiarize graduated students with principles of designing systems and control elements of airplanes and missiles. At the first, history of control systems is presented. Afterward, airplanes and missiles control systems elements are introduced and control systems are investigated from different viewpoints including design topics and phases. Next chapter concentrates on aerodynamic considerations of control systems and thrust vectoring as well. Servomechanisms design and usage is studied subsequently. In the next chapter, sensors as an important parts of control systems are studied. Transformation functions of different channels are obtained utilizing linearization of equations of motion. Static and dynamic stability and different modes of motion is analyzed later. Consequently, different methods of control system design in time and frequency domains are presented. Flight computer design principles and it’s software considerations is discussed in advance. At the end of the course, complementary materials of control systems are studied.

Syllabus:

1. Introduction to Flight Control Systems Design
 - Main Components, Design Objectives and Design Cycle of Flight Control Systems
 - Open Loop and Closed Loop Control Systems
 - Feedback Effects on Control Systems
 - Different Feedback Control Systems
 - Continuous and Discontinuous Control Systems
 - Analog, Digital and Logical Control
 - Industrial Controllers
 - Summarization

2. Introduction to Flight Control Systems
 - History
 - Guidance, Navigation and Control
 - Flight Control Channels
 - Flight Control Methods
 - Autopilot and SAS Comparison

3. Aerodynamic Considerations of Flight Control Systems
 - Static and Dynamic Stability
Chapter 3: Syllabus of the Courses

20

7. A Review on Controller Design
 - Controller Design Objectives
 - Design with Frequency Response
 - Design with Root Locus
 - Design with Pole Placement
 - Design with State Space
 - Design in Time Domain

8. Linearization of Equations of Motion and Obtaining Flying Vehicle Transfer Functions
 - Coordinate Systems
 - Equations of Motion
 - Roll, Yaw and Pitch Channels Transfer Function

 - STT, BTT and RA Missiles
 - Introduction and Their Properties
 - STT Missiles Lateral and Roll Channel Control System Design
 - BTT Missiles Lateral Control System Design
 - MIMO Control System Design
 - One Channel Flight Control System Design

10. Control System Design of Airplanes

- Stability and Maneuverability
- Stability Static Margin
- Pressure Center Variation
- Hinge Moment
- Aeroelasticity Effects

4. Control Systems Performance
 - Tail Control System
 - Wing Control System
 - Canard Control System
 - Aerodynamic Surfaces Configuration Effects
 - Aerodynamic Surfaces Sizing
 - Lateral Jet Control
 - Thrust Vector Control
 - Mass and C.G. Variation Effects

5. Flight Control Actuators
 - Servomechanisms
 - Hydraulic Actuators
 - Pneumatic Actuators
 - Gas Actuators
 - Electrical Actuators

6. Flight Control Sensors
 - Accelerometers
 - Gyros
 - Angle of Attack Sensor
 - Other Sensors
 - Sensor Selection
• Airplane Longitudinal and Lateral Control
• Attitude Control Systems
• Flight Path Control Systems
• Active Flight Control

11. Thrust Vector Control Systems Design
• Classifications and Applications
• Mathematical Modeling
• Different Architectures of Thrust Vector Control
• Controller Design

12. Flight Computer Design Principles
• Design Requirements
• Design Input and Outputs
• Key points in Flight Computer Software Selection
• Flight Programming

13. Complementary Materials
• Sensitivity Analysis
• Man’s Effect in the Loop
• Parameter Optimizations
• Digital Controllers Design

Course Outcome:
At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Control systems elements of missiles and airplanes
2. Design Objectives and Methods of control system design
3. Design control systems for different channels of missile and airplanes

References:

Flight Simulation, 45745

Course Objectives:
The subject of computer modeling and simulation of dynamics of aerospace vehicles has evolved into a major discipline in recent years. This new discipline is used not only in the design process but also in the development and improvement of performance and operation of civil and military aircraft and missiles. This course, as a second part of the subject, discusses in great detail the various types of simulations for aerospace vehicles for three-, five-, and six-degree-of-freedom system, including real time simulators.

Syllabus:

1. Three-Degree-of-Freedom Simulation
 - Equations of Motion
 - Subsystem Models
 - Simulations

2. Five-Degree-of-Freedom Simulation
 - Pseudo-Five-DoF Equations of Motion
 - Subsystem Models

3. Six-Degree-of-Freedom Simulation
 - Six-DoF Equations of Motion
 - Subsystem Models
 - Monte Carlo Analysis

4. Real Time Applications
 - Flight Simulator
 - Hardware-in-the-loop Facility
 - Wargaming

Course Outcome:
In this course, students learn how to derive the equations of motion for the aerospace vehicles with different degrees of freedom and how to implement them on computer.

References:
Fuzzy control, 45735

Course Objectives:
This graduate course concerns fuzzy logic for automatic control. The course objectives are to teach the basics of fuzzy logic, to show how to use fuzzy logic, and to teach how to design a fuzzy controller. Some advanced topics on fuzzy controllers are also covered.

Syllabus:

1. Introduction, Definitions and Concepts
 - Intelligent Control
 - Fuzzy Logic
 - Fuzzy Control
 - Fuzzy Mathematics
 - Applications
 - Rule Base
 - Fuzzy Sets
 - Fuzzy System
 - Classic Versus Fuzzy Control System Design
 - An Example of Fuzzy Control

2. Fuzzy Mathematics
 - Fuzzy Sets and Membership Functions
 - Mathematical Operations on Fuzzy Sets
 - Fuzzy Relations
 - Linguistic Variables
 - Fuzzy Rules
 - Approximate Reasoning

3. Fuzzy Systems
 - Fuzzy Rule Base
 - Fuzzy Inference Engine
 - Fuzzifier
 - Defuzzifier
 - Mathematical Representations of Fuzzy Systems
 - The Approximation Properties of Fuzzy Systems

4. Design of Fuzzy Systems Using Input-Output Data
 - Look-up Table Scheme
 - Gradient Descent Training
 - Batch Algorithm
 - Clustering

5. Design of Fuzzy Controllers
 - Trial and Error Approach
 - Control surface of a fuzzy controller
 - Stable Fuzzy Controllers
 - Optimal Fuzzy Controllers
 - Robust Fuzzy Controllers
 - Fuzzy System as Sliding Mode Control
 - Fuzzy Sliding Mode Control
 - Fuzzy Supervisory Control
 - Fuzzy Gain Scheduling
 - TSK Fuzzy Systems
Course Outcome:

Upon completion of this course the students will be able to:

1. Utilize the state of the art topics of fuzzy control in their research activities
2. Design fuzzy systems and fuzzy controllers

References:

Guidance and Navigation I, 45715

Prerequisite: Flight Dynamics II, 45157; Automatic Control, 45135

Course Objectives:

The objective of this course is to introduce the students the essential knowledge and skills they need to analyze and design various guidance and navigation systems. The course is broken into two parts that deal with both subjects of guidance and navigation. In the first part, the common tactical and strategic guidance algorithms, utilized in aerospace vehicles, are introduced. The second part covers the principles of radio and inertial navigation systems.

Syllabus:

1. Introduction, Definitions and Concepts
 - Guidance, Navigation and Control
 - Elements of a Guidance System
 - Guidance Phases
 - Guidance Trajectories
 - Guidance Sensors
2. Classification of Guidance and Navigation Systems
 - Basic Navigation Systems
 - Combined Navigation Systems
 - Classification of Guidance Systems
3. Three-point Guidance Laws
 - Line-of-Sight Guidance Laws in BR systems
 - Command to Line-of-Sight Guidance
 - CLOS Guidance with Lead Angle
4. Two-point Guidance Laws
 - Combined Lead and LOS Guidance Laws
 - Implementation of 3D CLOS
 - Pursuit Guidance
 - Proportional Navigation Guidance
 - 3D Implementation
 - Analytical Solution of TPN
 - Simulation of PN
 - Performance of TPN
 - Comparison of Beam Rider and PN
 - Proportional Navigation Command Guidance
 - Proportional Navigation Inertial Guidance
 - Implementation of Proportional Navigation Guidance
 - Linearization of PN
 - Analysis of the Homing Loop Using Adjoint Theory
 - TPN versus APN
 - Optimal Two-point Guidance
 - Pulsed Guidance
5. Ballistic Guidance Laws
 - Ballistic Trajectories
 - Required Velocity
 - Gravity Turn
 - Lambert Problem
 - Velocity to be Gained
 - Cross Product Steering
 - Lambert Guidance
 - General Energy Management (GEM) Steering
 - Explicit Versus Implicit Guidance
 - Q and Q* Guidance
 - Preset Guidance

6. UAVs Guidance Laws
 - UAV Guidance Problems
 - Application of Tactical Guidance Laws in UAVs
 - Trajectory Tracking
 - Terrain Following/ Terrain Avoidance
 - Cooperative Missions

7. Principles of Inertial Navigation
 - Components
 - Two-dimensional Navigation
 - Coordinate Systems
 - 3D Strapdown Navigation System
 - Strapdown System Mechanizations
 - Attitude Representation
 - Navigation Equations in Component Form
 - Effects of Elliptic Earth

8. Inertial Sensors
 - Gyroscope principles
 - Single-axis Rate Gyroscope
 - Accelerometers
 - Force balanced sensors

 - Test Equipment
 - Calibration of Accelerometers
 - Calibration of Rate Gyros
 - Hardware-in-the-loop Simulation

10. Initial Alignment
 - Coarse Alignment
 - Fine Alignment

Course Outcome:

Upon completion of this course, the students will be able to analyze and architect guidance and navigation systems for aerospace vehicles.

References:

Heuristic Optimization Algorithms, 45770

Course Objectives:

In this course, the modern heuristic optimization algorithms such as Evolutionary Algorithms, Ant Colony Optimization, Simulated Annealing, Tabu Search and Particle Swarm Optimization is introduced with a concentration on the application of these algorithms in aerospace problems. The course begins with a classification of the optimization problems and the definition of the primary concepts such as discrete and continuous search domains, multi-objective optimization, dynamic optimization, global optimization, stochastic optimization and swarm intelligence. Then some heuristic methods is introduced in detail including the basic and original algorithms, characteristics, adaptation to constrained and multi-objective problems, parallelization and successful aerospace applications. The course ends with some miscellaneous and complementary materials such as parameter tuning techniques, rotated search domains, hybrid metaheuristics, etc.

Syllabus:

1. Introduction, Definitions and Concepts
 - Optimization
 - Operations/Operational Research (OR)
 - Optimization and Engineering
 - Definition of an Optimization Problem
 - Feasibility Problem
 - Classification of the Optimization Problems
 - Classification of the Optimization Techniques
 - Heuristic Algorithms vs. Metaheuristics
 - Nature-Inspired Optimization
 - Population-Based Optimization
 - Swarm Intelligence
 - Parallel Algorithms

2. An Overview of Mathematical Optimization
 - An Overview of Mathematical Optimization

3. An Overview of Heuristic Optimization Algorithms
 - Random Search
 - Simplex Algorithm
 - Neighborhood Search
 - Hill Climbing Methods
 - Greedy Algorithms
 - Simulated Annealing
 - Tabu Search
 - Evolutionary Algorithms
 - Ant Colony Optimization
 - Particle Swarm Optimization
 - Other Heuristics

3. Simulated Annealing
 - Real Annealing and Simulated Annealing
 - Metropolis Algorithm
Chapter 3: Syllabus of the Courses

3. Simulated Annealing Algorithm
 - Convergence of Simulated Annealing
 - Continuous Simulated Annealing
 - One-loop Simulated Annealing
 - Temperature Scheduling
 - Parallelization of Simulated Annealing Algorithms
 - Multi-objective Simulated Annealing
 - Constrained Simulated Annealing
 - Applications

4. Tabu Search
 - Basic Tabu Search
 - Short-term Memory
 - Long-term Memory
 - Continuous Tabu Search
 - Diversification and Intensification
 - Parallelization
 - Constrained Tabu Search
 - Multi-objective Tabu Search
 - Applications

5. Evolutionary Algorithms
 - Definitions
 - Drivers of Evolution
 - Genetic Algorithms
 - Steady State GAs
 - Memetic Algorithms
 - Estimation of Distribution Algorithms
 - Differential Evolution
 - Parallelization
 - Evolutionary Multi-objective Optimization

6. Constrained Evolutionary Optimization
 - Adaptive Evolutionary Algorithms
 - Applications

6. Ant Colony Optimization
 - Definitions
 - Collective Behavior of Social Insects
 - Basic ACO Algorithms
 - Pheromones and Memory
 - Ant Algorithms for TSP
 - Adaptation to Continuous Problems
 - Parallelization of ACO algorithms
 - Multi-objective ACO
 - Adaptation to Constrained Problems
 - Applications

7. Particle Swarm Optimization
 - Basic Idea
 - Canonical PSO Algorithm
 - Neighborhood Topologies
 - Continuous and Constrained PSO
 - Multi-objective PSO
 - Parallelization of PSO Algorithms
 - Applications

8. Miscellaneous and Complementary Topics
 - Normalization
 - Test Functions
 - Tuning the Parameters of the Optimization Algorithms
 - Correlation Handling
Course Outcome:

At the conclusion of this course the student will be able:

1. Utilize state of the art heuristic optimization algorithms in their research activities.
2. Design and propose new and hybrid optimization algorithms.
3. Customize heuristic optimization algorithms for special applications.

References:

Launch Vehicle System Design, 45781

Course Objectives:
This course is generally designed to learn general system design process of launch vehicle (LV). In the beginning, some introduction and definitions are presented and system design of LV is discussed afterward. Engine design is noticed for both liquid and solid propellants. Subsequently, structural and aerodynamic design is presented as well as guidance, navigation and control systems. The final course topics focus on some complementary topics such as separation, ground station, etc.

Syllabus:

1. Introduction
 - Terms and Definitions
 - Aeronautics Historical Review
 - Orbits
 - Orbital Mechanics
 - Orbital Elements
 - Coordinate Systems

2. LV System Design
 - Introduction to LVs
 - Classification of LVs
 - LVs Staging, Number of Stages
 - Mass and Thrust Budgeting
 - Introduction to Conventional LV’s Subsystems
 - LV Subsystems Relation
 - LV Performance Indexes
 - Design Phases
 - System Design Process

3. LV Flight Trajectory
 - Equations of Motion
 - Flight Trajectory
 - Types of Losses
 - LV Path Planning
 - Satellite Injection to Orbit

4. LV Propulsion System
 - General Design
 - Liquid Propellant Engine Elements
 - Liquid Propellant Engine Design Procedure
 - Liquid Propellants
 - Feeding System Design
 - Tanks and Pressure Vessels
 - Turbo-pump Design
 - Combustion Chamber Design
 - Combustion Instability
3. Solid Propellant Engine Elements
4. Solid Propellant Engine Design Procedure
5. Solid Propellants
6. Grain Design
7. Ignition System Design
8. Nozzle Design
9. Burning Rate and Temperature Relation
10. Erosive Burning

5. Control Mechanism Design
11. Jet Vane Thrust Vector Control
12. Variable Nozzle
13. Gimbaled Nozzle

6. Structural Design
14. Structural Elements
15. Structural Loads
16. Types of Structures
17. Structural Design Procedure
18. Structural Materials
19. Composite Structures
20. Engine Structure Design
21. Component's Structure Design (Stabilizers, Control Fins, etc)
22. Adaptor Design
23. Aero-elasticity Considerations

7. Aerodynamic Design
25. Aerodynamic Design Criterion
26. Configuration Design
27. Control Fin and Stabilizer Design

8. Guidance, Navigation and Control
28. LV Guidance Methods
29. Guidance Laws
30. Trajectory Shaping
31. Navigation Systems and Methods
32. Sensors
33. INS Types
34. Autopilot Design Procedure
35. Actuators and Servomechanisms
36. Controller Design in Different flight Phases

9. Separation Mechanisms and Retrorockets

10. Miscellaneous Topics
37. Flight Computer
38. Ground Station
39. Launch Station
Course Outcome:
At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Overall view on LV subsystems and system design procedures
2. Design process of engine as an important section of LV
3. LV Structure and aerodynamic design
4. LV Guidance, Navigation and Control design

References:

Modeling of Aerospace Dynamic Systems, 45747

Course Objectives:
The subject of computer modeling and simulation of dynamics of aerospace vehicles has evolved into a major discipline in recent years. This new discipline is used not only in the design process but also in the development and improvement of performance and operation of civil and military aircraft and missiles. This course, as a first part of the subject, discusses the theoretical concepts that provide mathematical foundation for the simulation of aerospace systems. This includes frames of reference and coordinate systems, kinematics of translation and rotation, translational and attitude dynamics, as well as perturbation techniques used for modeling.

Syllabus:

1. Introduction to the subject
 - Virtual Engineering
 - Modeling of Flight Dynamics
 - Simulation of Aerospace Vehicles

2. Mathematical Concepts in Modeling
 - Classical Mechanics
 - Tensor Elements
 - Modeling of Geometry

3. Frames and Coordinate Systems
 - Frames
 - Coordinate Systems

4. Kinematics of Translation and Rotation
 - Rotation Tensor
 - Kinematics of Changing Time
 - Attitude Determination

5. Translational Dynamics
 - Linear Momentum
 - Newtonian Dynamics
 - Transformations
 - Simulation Implementation

6. Attitude Dynamics
 - Inertia Tensor
 - Angular Momentum
 - Euler's Law
 - Gyrodynamics

7. Perturbation Equations
 - Perturbation Techniques
 - Linear and Angular Momentum Equations
 - Aerodynamic Forces and Moments
 - Perturbation Equations of Steady Flight
 - Perturbation Equations of Unsteady Flight
Course Outcome:
In this course students learn how to formulate the dynamic behavior of aerospace vehicles in a concise mathematical form and how to convert this model into a computer code.

References:
Missile Flight Dynamics, 45725

Course Objectives:
This course is defined to familiarize aerospace graduated students with missile vibrational behavior analysis and also development of equations of motion. This course fundamentally considers dynamic behavior of rockets and missiles with analytical view. Sources of errors affecting on the dispersion of missiles are considered and the required criterion for comparing their dynamics are presented. Flight simulations with different degrees of freedom are developed and then linear and angular motions based on similar dynamic systems are developed. Equations of motion using both Lagrange’s and Newton’s approach are developed in various coordinate systems. Dynamic stability regions are analytically determined and evaluated.

Syllabus:

1. Introduction to Flight Dynamics
 - Terms and definitions
 - Coordinate Systems
 - Types of Simulations (One, Two …, Six Degree of Freedom)
 - Difference Between Applications of Simulation and Flight Dynamics
 - Introduction to Equations of Motion Using Lagrange and Euler Approaches

2. Equations of Linear Motion
 - Horizontal Flight Considering Drag
 - Vertical Flight Considering Drag and Gravity Forces
 - Two Degree of Freedom Flight in Vacuum
 - Two Degree of Freedom Flight Considering Drag and Gravity Forces
 - Horizontal Flight Considering Thrust Force Without Drag (Variable Mass)
 - Vertical Flight Considering Thrust Force Without Drag (Variable Mass)
 - Horizontal Flight Considering Thrust and Drag Forces (Variable Mass)

3. Rigid Body Angular Motion (Pendulum Motion)
 - Simple Pendulum Motion
 - Complex Pendulum Motion
 - Spherical Pendulum Motion

4. Simple Angular Motion
 - Constrained Pitching Motion Considering Static
Aerodynamic Forces and Dynamic Stability Analysis
- Constrained Pitching Motion Considering Static and Dynamic Aerodynamic Forces and Dynamic Stability Analysis
- Constrained Pitching Motion Considering Constant Control Surface Deflections or Geometrical Asymmetries
- Stability Derivatives Determination Using Pitching Motion Analysis

5. Pitching and Heaving Motion
- Pitching and Heaving Equations of Motion Considering Gravity Force
- Dynamic Stability Analysis

6. Pitching, Heaving, Yawing and Swerving Motion
- Pitching, Heaving, Yawing and Swerving Equations of Motion
- Dynamic Stability Analysis

7. Rolling Motion
- Rolling Motion of Missiles Flying With Constant Speed
- Rolling Motion Velocity Half-Life
- Retardation Motion with Rolling
- Rolling Stability Derivatives Determination Using Rolling Motion Data

8. General Rigid Body Motion and Stability
- Wobbling Coordinate Systems
- Complete Motion With Static Fluid Forces
- Complete Angular Motion With Static Fluid Forces
- Complete Angular Motion With Static And Dynamic Fluid Forces
- Free Flight Motion With Static And Dynamic Fluid Forces

9. Missile Dynamics Transfer Functions
- Pitch Channel Transfer Function
- Yaw Channel Transfer Function
- Roll Channel Transfer Function

10. Flexible Body Equations of Motion

11. Flight Performance Analysis

Course Outcome:

The outcomings of this course are development in:

1. Analyzing the vibrational motion of missiles
2. Analyzing the dynamic behavior of rockets and missiles
3. Modeling the angular motion of different types of missiles
4. Deriving the equations of motion in various coordinate systems
5. Determining the stability regions of dynamic motion
6. Analyzing the sources of dispersion
7. Analyzing the performance of flight of Missiles

References:

Multivariable Control, 45750

Course Objectives:
This course is designed to familiarize graduated student with multivariable control. At the first, the nature of multivariable systems will be discussed. All Representation of multivariable systems will be studied later. In advance, Extension of SISO frequency domain concepts such as gain, bandwidth, etc. to multivariable systems will be taught. Generalization of frequency domain stability analysis to multivariable systems is another subject of this course. At the end of course, design techniques for multivariable systems based on the frequency domain will be considered.

Syllabus:

1. Aims of Control
 - Input-output response
 - Stability
 - Noise Suppression
 - Small Parameter Variations
 - Large Parameter Variations
 - Interactions

2. The Sensitivity Function
 - Open Loop Control
 - Closed Loop Control
 - Model Uncertainty
 - Disturbance Rejection

3. Structure for Control
 - One-degree of Freedom Control
 - Two-degree of Freedom Controllers
 - Design of Single loop Two Degree of Freedom Control Systems.

4. Introduction to Multivariable Systems
 - Loop Interaction

5. Measures of Multivariable Gain
 - Vector Norms and Induced Norms
 - The Singular Value Decomposition
 - System Norms

6. Linear System Models:
 Representations and Standard Forms
 - The State-space Description
 - State–space Standard Forms and Realization
 - Transfer Function Matrix Standard Forms
 - Matrix Function Description
 - Reosenbrock’s System Matrix
 - Transformation of system Matrices
 - Summary of Transformations
Chapter 3: Syllabus of the Courses

7. Controllability and Observability
 - Controllability
 - Observability
 - Decoupling Zeros
 - Realizations and Reconstruction

8. Poles and Zeros of MIMO Systems
 - Poles of a System
 - Zeros of a System
 - Cancelations, Stabilizability, and Detectability

9. Multivariable Model Handling Techniques
 - Interconnections and Operations

10. Model Error Reduction
 - System Gramians
 - Order Reduction Methods

11. Multivariable Interaction
 - Measures of Interaction for Constant Matrices
 - Extension of Interaction Measures to Dynamical Systems

12. Stability of MIMO Systems
 - Internal Stability
 - The Generalized Nyquist Stability Criterion
 - The Gain Space
 - Performance and Robustness Limits

13. Simply Structured Design
 - The Nyquist Array Design Method
 - Structure of Multivariable Systems
 - Achieving Diagonal Dominance

14. Case Studies
 - A Chemical Reactor
 - A Reheat Furnace
 - An Islanded Distributed Generation Unit
 - The Automotive Gas-turbine
 - The Rolls Royce Spey Gas-turbine Engine
 - Level Control Systems
 - Gasifier Challenge Problem

Course Outcome:
After studying this course, the student would be able to demonstrate an understanding of:

1. Nature of multivariable system interactions
2. Representation of multivariable systems and the associated canonical forms with each representation
3. Extension of SISO frequency domain concepts such as gain, bandwidth, etc. to multivariable systems
4. Generalization of frequency domain stability analysis to multivariable systems.
5. An understanding of design versus synthesis techniques and a review of design techniques for multivariable systems based on the frequency domain.

References:

Neural Networks, 45775

Prerequisite: Advanced Mathematics I, 45510

Course Objectives:

This course gives an introduction to basic neural network architectures and learning rules. Emphasis is placed on the mathematical analysis of these networks, on methods of training them and their application to practical engineering problems in such areas as pattern recognition, signal processing and control systems. The course is organized for the senior or graduate level students and they will be able to implement and simulate network models using MATLAB.

Syllabus:

1. Neuron Model and Network Architectures
 - Notation
 - Neuron Models
 - Network Architectures

2. Vector Spaces and Linear Transformations
 - Linear Vector Spaces
 - Linear Independence
 - Spanning a Space
 - Inner Product
 - Norm
 - Orthogonality
 - Vector Expansions
 - Linear Transformations
 - Matrix Representations
 - Change of Basis
 - Eigenvalues and Eigenvectors

3. Fundamental Structures for Pattern Recognition and Clustering

4. Perceptron Learning Rule
 - Learning Rules
 - Perceptron Architecture
 - Perceptron Learning Rule
 - Proof of Convergence

5. Hebbian Learning
 - Linear Associator
 - The Hebb Rule
 - Pseudoinverse Rule
 - Variations of Hebbian Learning

6. Performance Optimization
 - Necessary Conditions for Optimality
 - Quadratic Functions
 - Steepest Descent
 - Newton’s Method
 - Conjugate Gradient

7. Widrow-Hoff Learning
 - ADALINE Networks
 - Mean Square Error
 - LMS Algorithm
Chapter 3: Syllabus of the Courses

- Analysis of Convergence
- Adaptive Filtering
- Drawbacks of Backpropagation
- Heuristic Modifications of Backpropagations
- Numerical Optimization Techniques

8. Hopfield Network
- Hopfield Model
- Lyapunov Function
- Effect of Gain
- Hopfield Design

9. Backpropagation
- Multilayer Perceptron
- The Backpropagation Algorithm
- Numerical Optimization Techniques
- 10. Competitive Networks
- Hamming Network
- Competitive Layer
- Learning Vector Quantization
- Grossberg Network

Course Outcome:

At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Neural network architectures, learning rules, and training techniques
2. Design of neural networks
3. Neural network application to practical engineering problems

References:

Optimal Control I, 45765
Prerequisites: Automatic Control, 45135; Differential Equations, 22016

Course Objectives:
This course is designed to introduce the theoretical and algorithmic fundamentals of deterministic optimal control (OC) that is implementable for solution and analysis of continuous/discrete dynamic systems. In this framework, optimal policy generally refers to optimal control input signals, optimal guidance strategies and/or optimal trajectories that minimize a generalized performance index under various constraints.

As OC methodologies can be utilized in many fields such as science and engineering, the course starts with a general definition and formulation of the OC problem and introduction of common performance functions. The method of dynamic programming based on the Bellman’s principle of optimality is one of the conventional solution schemes used for OC, and as such its concept is initially discussed for discrete systems and subsequently generalized to cover all other systems. Calculus of variation (CV) is another solution approach for OC problems that is also attended to as a major topic in this course. Upon conceptual introduction of functional, extremal, variation and the fundamental principle of CV, a two point boundary value problem (TPBVP) evolves for the derivation of extremals. Application of CV for two widespread problems of quadratic regulator and tracking results in the so called Ricatti equation for linear systems that is easily implementable. The concluding materials cover modeling state and control constraints using the Pontryagin’s minimum principle. Other direct optimization approaches such as nonlinear programming (NLP) will also be introduced.

Syllabus:

1. Introduction
 - Optimal Control Problem
 Introduction and Formulation
 - System Classification and Control Laws

2. Performance Measures
 - Conventional Performance Measures
 - Selection and Weighting Functions

3. Dynamic Programming (DP)
 - OC Policy Definition and Bellman’s Optimality Principle
 - Recurrence Relation for DP
• DP for Linear/ Nonlinear, Discrete/ Continuous Systems
• Hamilton-Jacobi-Bellman Equation

4. Calculus of Variation (CV)
• Basic Concepts and Related Mathematics
• Definition of Functional and Variations
• Fundamental Principle of CV and the Euler’s Equation (TPBVP)
• Functionals of Several Functions
• Generalized Boundary Conditions
• Constrained and Cornered Extremals

5. Application of CV to OC Problems
• Necessary Equations for OC Problems
• Hamiltonian and the Generalizing Boundary Equations

6. Numerical Methods for OC
• Review of the Basic TPBVP
• Steepest Descent and Variation of Extremals
• Quasilinearization and Gradient Projection
• Sequential Quadratic Programming
• Shooting method and Multiple SM
• Levenberg-Marquardt Method

Course Outcome:

Upon successful completion of this course the student have gained the following understanding and capabilities:

1. Modeling and formulation of OC problems for all dynamic systems
2. CV and its utility in constrained optimization of cost functions
3. Optimal controller design using the DP and CV approaches
4. Ability to solve LQR and LQT as typical widespread OC problems
5. A basic familiarity with various gradient based numerical optimization schemes
Chapter 3: Syllabus of the Courses

References:

Optimal Control II, 45766
Prerequisite: Optimal control I, 45765

Course Objectives:
This course combines the role of two basic level courses in probability theory and random processes to pave the way for a basic introductory course in stochastic systems (SS) and optimal estimation. In this sense, some basic fundamentals of probability theory, random variables and processes are initially reviewed. Upon introduction of Gaussian processes and the Markov properties, priory statistical analysis (SA) of stochastic systems with no measurements is addressed. Differentiation of white and colored process noise is highlighted and the concept of shaping filter for conversion is reviewed.

Subsequently, with addition of the measurement units, the least square error (LSE) parameter estimation method that leads to conceptual development of discrete time linear Kalman filter (KF) for noise removal (out of measured data) is introduced. The LSE KF is next extended to nonlinear measurement models and also augmented with system equations to establish what is called the secondary SA or optimal estimation for stochastic systems with measurements. Filter implementations for nonlinear and/or hybrid system and measurement models are generalized. In this respect the linearized and (LKF) and extended Kalman filters (EKF) are covered.

Additionally, several related topics such as filter divergence, stationary processes and the concept of noise and/or parameter modeling for stochastic estimation will be discussed. The problem of optimal smoothing and prediction as well as optimal control in presence of uncertainty (LQG) concludes the major topics intended for coverage in this course.

Syllabus:

1. Review of Statistical Concepts
 - Discrete and Continuous Random Variables
 - Discrete and Continuous Random Vectors
 - Multivariate Probability Functions and Conditional Distributions

2. Introduction to Random Process
 - Correlation and Power Spectral Density Functions
 - Stationary Process, White Noise and Simulation
 - Random Sequences and Markov Properties
• Gauss-Markov Random Processes

3. Stochastic Systems and Covariance Analysis
• Mean and Covariance Propagation
• Colored Noise and Shaping Filters
• Discrete and Continuous Systems
• Error Analysis of Linear Systems
• Error Models for Measuring Systems
• Monte-Carlo Simulation

4. Optimal Filtering and Prediction
• State Estimation Concept and Criteria
• Cramer-Rao Inequality
• Least Square Estimation (Ordinary, Weighted, Recursive)
• Filtering and the Measurement Effect

5. Kalman Filters for Linear Systems (Discrete/Continuous)
• Linearized (LKF) and Extended Kalman Filters (EKF) for Non-Linear Systems
• Filter Divergence

5. Optimal Prediction and Smoothing
• Smoothing for Single and Multistage Processes
• Various Forms of Smoothing

6. Optimal Control in Presence of Uncertainty
• Linear Quadratic Gaussian Regulators
• Average Behavior of Controlled Systems

7. Special topics
• Nonlinear Filtering
• Adaptive Estimation

Course Outcome:
Upon conclusion of this course the students have gained the following understanding and/or capabilities:

1. Familiarity with random process and their statistical properties
2. Stochastic systems and covariance analysis
3. Least square weighted estimation
4. State estimation via batch or recursive Kalman filters for linear/nonlinear systems
5. Parameter estimation and system identification
6. Filter divergence and remedies
7. Optimal control of uncertain systems with measurement models
References:

Satellite System Design, 45782
Prerequisite: Orbital Mechanics, 45407

Course Objectives:
This course has been designed to give an introduction to the design of the space missions and satellites. The course starts with introduction of satellite systems and missions and the space mission analysis and design process. After the review of the orbit design as a major task in mission design, the course continues with general satellite system design. After the configuration is fixed, the subsystem design processes is presented. This includes the Attitude Determination and Control, Orbit Determination and Control, Thermal Control, Electric Power, Propulsion, Structures and Mechanisms, Communication, and Command and Data Handling Subsystems. Then, the selection of launch system as a part of space mission design is presented. Finally, by introducing some of the major items in manufacturing and test and their effect in design process, the students would learn the fundamentals of the space mission and satellite system design.

Syllabus:

1. Introduction and Overview
 - Introduction to Satellite System and Subsystems
 - Satellite Categories
 - Satellite System Engineering
 - Space Mission Phases

2. Space Mission Analysis and Design
 - Space Mission Life Cycle
 - Mission Objectives
 - Preliminary Estimate of Mission Needs, Requirements, and Constraints
 - Mission Characterization
 - Identifying Alternative Mission Concepts and Architectures
 - Identifying System Drivers and Critical Requirements
 - Characterizing the Mission Architecture
 - Mission Evaluation
 - Requirements Definition

3. Orbit and Constellation Design
 - Orbit Selection and Design Process
 - Orbital Perturbations
 - Orbit Lifetime
 - Earth Coverage
 - Earth Eclipse
Chapter 3: Syllabus of the Courses

4. Spacecraft Design and Sizing
- Requirements, Constraints, Design Process
- Spacecraft Configuration
- Design Budgets (Mass/Power/...)
- Spacecraft Bus Sizing and Initial Estimations
- Integrating the Spacecraft Design
- Spacecraft Lifetime and Reliability

5. Attitude Determination and Control Subsystem
- Introduction to Attitude Control Approaches, Actuators, and Sensors
- Control Modes and Requirements
- Disturbance Moments and the Required Control Moment
- Select and Size ADCS Components
- Control Algorithms

6. Orbit Determination and Control
- Introduction to Guidance, Navigation, and Control Subsystem
- Orbit Determination and Control Requirements
- Orbit Maintenance
- Autonomous Orbit Determination and Control Subsystem Sizing

7. Thermal Control Subsystem
- Thermal Requirements
- Introduction to Thermal Equilibrium and Temperature
- Spacecraft Thermal Environment
- Thermal Control Components
- Thermal Control System Design Process
- Thermal Control Challenges
- Mass and Power Estimates

8. Electric Power Subsystem
- Power Subsystem Functions
- Preliminary Power Subsystem Design Process
- Power Sources
- Energy Storage
- Power Distribution
- Power Regulation and Control

9. Space Propulsion Subsystem
- Propulsion Subsystem Selection and Sizing
- Basics of Rocket Propulsion
• Types of Rocket Propulsions
• Component Selection and Sizing

10. Structures and Mechanisms Subsystem
• Design Process for Structures and Mechanisms
• Structural Design Philosophy and Criteria
• Structural Requirements
• Design Options
• Material Selection
• Preliminary Sizing of Structural Members
• Structural Mechanics and Analysis
• Mechanisms and Deployables

11. Communication Subsystem (Telemetry, Tracking, and Command)
• TT&C Subsystem Tasks
• TT&C Subsystem Requirements
• Design Process for the TT&C Subsystem
• Selection Criteria for the TT&C Subsystem

12. Command and Data Handling (Computer) Subsystem
• C&DH Components
• C&DH Requirements
• C&DH System Sizing Process

13. Launch System
• Steps in Selecting a Launch System
• Launch Vehicle Considerations
• Launch System Selection Process
• Typical Launch Systems and Launch Sites
• Launch Vehicle Ascent Environments and Payload Fairing Constraints

14. Spacecraft Manufacturing and Test
• Engineering Data
• Manufacturing, Procurement, and Scheduling
• Manufacture of High-Reliability Hardware
• Influencing the Design
• Challenges for Manufacturing, Material, Test, and Launch Processing
• Design for Reliability
• Inspection and Quality Assurance
• Qualification Program and Test Flow
Course Outcome:

At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Space mission analysis and design process
2. Orbit design
3. Satellite system design
4. Satellite subsystems design
5. Launch system selection
6. Fundamental of manufacturing and test of satellite systems

References:

Space Propulsion, 45779
Prerequisite: Propulsion Principles, 45117

Course Objectives:

This course has been designed to:

1. Introduce the physical background and engineering of electric propulsion technologies.
2. Introduce the fundamentals, design, and performance characteristics of electric propulsion technologies.
3. Perform preliminary design of different electric thrusters driven by space propulsion requirements.

Syllabus:

1. Introduction
 - Electric Propulsion Background
 - Electric Thruster Types
 - Ion Thruster Geometry
 - Hall Thruster Geometry
 - Beam/Plume Characteristics

2. Thruster Principles
 - The Rocket Equation
 - Force Transfer in Ion and Hall Thrusters
 - Thrust
 - Specific Impulse
 - Thruster Efficiency
 - Power Dissipation
 - Neutral Densities and Ingestion in Electric Thrusters

3. Basic Plasma Physics
 - Introduction
 - Maxwell’s Equations
 - Single Particle Motions
 - Particle Energies and Velocities
 - Plasma as a Fluid
 - Diffusion in Partially Ionized Gases
 - Sheaths at the Boundaries of Plasmas

4. Ion Thruster Plasma Generators
 - Introduction
 - Idealized Ion Thruster Plasma Generator
 - DC Discharge Ion Thruster
 - Kaufman Ion Thrusters
 - Ion Thrusters
 - Microwave Ion Thrusters
Course Outcome:

At the conclusion of this course the student will be able to demonstrate basic understanding of:

1. space propulsion requirements and maneuvers
2. plasma physics with emphasis in technologies as ion engines and Hall thrusters

References:

Space Structures Materials, 45932

Course Objectives:
By increasing number of space flights a new research area has been opened for the researchers. Lack of gravity in the space, make space a favorite place for researchers in different areas to do their own researches. Environmental change and meteorology as well as earth can be effectively and economically studied from space. Nowadays, increasing in applications of satellites made them part of our life in a way that living without them seems impossible. On the other hand, increasing space flights and their large costs, forces us to employ new technologies in order to keep space flights economical, reasonable and durable.

Since satellite environment is highly different from airplane environment, it dictates applying different science in design, produce and analysis of structures. Satellite structure should withstand against launch loads (acceleration, Acoustic and thermal loads) and resist all random loads, which could occur during required performance maneuvers in earth orbit. In addition, satellite structure should be designed such a way that it has a suitable frame to locate for different subsystems (like thermal control subsystems, optician components, electronic components mechanism, etc.). Appropriate satellite structure design, would develop a clean environment in assembly process of all subsystems. Since satellite weight is an important parameter related to space flight’s cost, decreasing weight based on safety factors is an important part in structure design of satellites.

Syllabus:

1. Introduction
 - Satellite
 - Platform
 - Payload
 - Satellite-launcher Synchronizer

2. Satellite Subsystems
 - Introduction
 - Location of Subsystems and Their Objective

3. Space Mission Life Cycle
 - Introduction to Design phases: Preliminary Design to Utilization

4. Structure and Mechanism Design Flow
 - Structure and Mechanism Design Flowchart
Chapter 3: Syllabus of the Courses

- Satellite Mission (Statement, Requirements and Mission Analysis)
- Systemic Specifications
- Subsystem Specifications
- Preliminary Design Structure Architecture
- Preliminary Design Loads
- Structure and Satellite Preliminary FEM Model
- Structure Elements and Brackets Safety Margin Derivation
- Subsystems’ interfaces Control
- Tools, Devices and Materials Technical and Performance Specification
- Tools, Devices and Materials Purchasing Specification
- Preliminary Design Review Report
- Updating Systemic Specifications
- Updating Structure Architecture
- Structure and Satellite Detailed Geometrical Model
- Structure and Satellite Precise Preliminary FEM Model
- Ultimate Loads of Critical Design
- Segments Safety Margin Derivation
- Critical Design Review Report
- Systemic Specifications Finalization
- Developing Manufacturing Plans and Integration
- Developing Test Procedures

5. Structure Subsystem and Launcher Relation
- Structure Subsystem and Launcher Relation Document
- Launch Container
- Structure and Launcher Synchronizer Plan
- Applied Loads from Launcher on Satellites

6. Structure and Satellite Configuration
- Sizing
- Mass Specifications
- Mass Estimation
- Mass Growth
- Mass Margin

7. Mass Specifying
- Maximum Satellite Launch Weight
- Synchronizer Mass
- Fuel and Pressurized Liquid Mass
- Total Permitted Wet Mass
- Subsystems Mass Budgeting

8. Moments of Inertia
- Coordinate System
9. Satellite Design and Analysis
- Satellite Subsystem Locating
- Satellite Geometrical Modeling
- Applied Loads on Satellite
- Modal Analysis
- Quasi-static Acceleration Limit
- Structure Static Analysis
- Joint Analysis
- Random Load Sources Identification
- Random Vibration Analysis
- Safety Factor
- Structure’s Safety Margin

10. Manufacturing Plans
- Parts and Plans Coding
- Manufacturing Plans’ Tolerances
- Components Quality Control

11. Structure Material Selection
- Aluminum Alloys
- Polymers
- Sandwich Planes
- Standard Joints

12. Satellite Mechanisms
- Solar Arrays, Antenna, Reflector and Boom Mechanism
- Mechanisms Dynamic Analysis

13. Environmental Tests
- Mass Properties Test
- Vibration Tests (Resonance Search Test; Sinusoidal, Random and Acoustic Vibration Test)

14. Selected Topics in Satellite Structure Design (Thermal Topics in Satellite, etc.)

Course Outcome:
Aerospace students in structure division, learn the basics and requirements of design and analysis of aerial structures in relevant courses. This course covers most of the topics about design and analysis of aerial structures. However, the main objective of this course is to teach requirements as well as design and analysis methods of satellites to graduate students.

References:
Spacecraft Dynamics and Control, 45780

Prerequisite: Orbital Mechanics, 45407

Course Objectives:

The attitude kinematics and rigid-body dynamics of satellites in free Newtonian space and in an orbit around Earth are introduced. The different attitude representations and their differential equation as well as the Euler’s dynamic equation are derived. The motion of rigid-body without external torque and in presence of external torque is discussed. Furthermore, the passive and active attitude stabilization and control of satellite in the orbit using gravity gradient, magnetic actuation, momentum exchange devices and reaction thrusters are taught. Moreover, the basic attitude determination concepts and formulas are introduced.

Syllabus:

1. Introduction and Overview
 - Introduction to Orbital Mechanics and Attitude Dynamics
 - Two-Body Problem
 - Coordinate Systems
 - Orbital Maneuvers
 - Orbital Perturbations

2. Attitude Kinematics
 - Description of Attitude Kinematics Using Reference Frames
 - Rotation Matrices
 - Euler Angles
 - Euler’s Eigenaxis Rotation
 - Euler Parameters/Quaternions
 - Gibbs Parameters
 - Kinematic Differential Equations

3. Rigid Body Rotational Dynamics
 - Equations of Motion for Rigid Satellites
 - Angular Momentum
 - Euler’s Equations
 - Moments of Inertia and Principal Axes

4. Torque-Free Motion
 - Torque-Free Motion of an Axisymmetric Rigid Body
 - General Torque-Free Motion
 - Stability of Torque-Free Motion About Principal Axes

5. Body-Fixed Torque Motion
 - Spinning Axisymmetric Body with Constant Body-Fixed Torque
 - Asymmetric Rigid Body with Constant Body-Fixed Torques
 - Linear Stability of Equilibrium Points
Chapter 3: Syllabus of the Courses

6. Rigid Body in a Circular Orbit
 - Equations of Motion
 - Linear Stability Analysis
 - Dual-Spin Satellite
 - Passive Damping of a Dual-Spinner

7. Attitude Control and Stabilization
 - Gravity Gradient Stabilization
 - Time Behavior of Pure GG stabilization
 - GG Stabilization with Passive Dampers
 - GG Stabilization with Active Magnetic Damping
 - Attitude Control in Space (Slew Maneuvers)
 - Quaternion Feedback Control

8. Attitude Determination
 - Introduction of Attitude Sensors
 - Describing the Measurements Required to Determine the Attitude of a Spacecraft
 - Basic Attitude Determination Algorithms (Triad, q-Method, QUEST)

9. Advanced Topics
 - Design of ADCS (Attitude Determination and Control Subsystem)
 - Tethered Satellites
 - Effects of Flexibility

Course Outcome:

After studying this course, the student would be able to demonstrate an understanding of:

1. Different attitude representations
2. Attitude dynamics in orbit
3. Different attitude control using satellite actuators

References:

Space Systems Engineering, 45785

Course Objectives:

This course is designed to familiarize students with engineering processes for designing the whole space systems. In this regards, it is necessary to introduce space environment including planets, orbits, electromagnetic fields, heat transfer and so on. Investigation about various space missions is an important section of this course. The course describes the basic mission objectives and examines the principles and practical methods for mission design and operations in depth. Considering the cooperation of many separate elements in constructing space missions, the harmonic operation of them is discussed in detail. The translation of needs from the users, designing system's architecture, defining the strategy and oversee the integration of elements to form the final result are presented in this course. Design, development and verification of the space systems as engineering processes are discussed in important parts of the course. Risk management and failure mode analysis of space systems are also introduced in detail. Quality assurance, test and evaluation and standards of space systems including reliability considerations, factory, field and flight tests, Ecss and Military standards construct other parts of this course.

This course is designed to provide:

1. A detailed introduction to space systems engineering
2. The ability for designing space missions and systems
3. The ability for verifying and validating the space missions and system designs
4. The conceptual framework for developing unmanned and crewed space missions
5. Analyzing the orbits and trajectories required to perform unmanned and crewed space missions
6. A disciplined approach for identifying opportunities to influence the design of a system from a reliability perspective
7. Insight to the risk management and decision making process
Syllabus:

1. Introduction to Space and Space Systems Engineering
 - Introduction to Space Environment
 - Introduction to Newton’s and Kepler’s Laws
 - Brief Introduction to Orbits and Orbital Mechanics
 - Perturbed Orbits
 - Brief Introduction to Two, Three and Many Body Problems

2. Space Missions
 - Navigation
 - Reconnaissance
 - Remote Sensing
 - Communications
 - Search and Rescue
 - Space Exploration
 - Meteorology
 - Astronomy
 - Crewed Space Missions

3. Space Systems
 - Launch Vehicles
 - Satellites
 - Manned Vehicles
 - Space Stations

4. System Engineering in Space Systems
 - Space Mission Need Analysis
 - Space Mission Requirements
 - Space Mission Feasibility Study

5. Conceptual Space Mission Design, Operations Concept Development
 - Technology Development Projects
 - System Design and Development
 - Manufacturing and Integration
 - Project Management
 - Risk Management and Other Program Issues
 - Failure Modes and Effects Analysis (FMEA)
 - Failure Modes, Effects and Criticality Analysis (FMECA)
 - Fault Tree Analysis (FTA)
 - Fault Tolerant Design

6. Quality Assurance of Space Systems
 - Place and Importance of Reliability Engineering
 - Mathematical Fundamentals of Reliability
 - Reliability of Parts and Components
 - Reliability of Systems
 - Reliability of Maintainable Systems
 - Physical Models of Reliability
 - Reliability Experiments
 - Reliability Assessment
 - Reliability Simulation
 - Reliability Implementation

6. Experiment Designing, Test and Evaluation of Space Systems
 - Design Phase Experiments
Chapter 3: Syllabus of the Courses

- Development Phase Experiments
- Manufacturing Phase Experiments
- Production Phase Experiments
- Factory Acceptance Tests
- Field Acceptance Tests
- Flight Acceptance Tests
- Environmental Tests

7. Space Operations
 - Introduction to Space Launch Sites

8. Space Standards
 - European Cooperation for Space Standardization (Ecss Standards)
 - National Aeronautics and Space Administration (NASA Standards)
 - Military Standards

Course Outcome:

The outcomes of this course are development in:

1. Enhanced understanding of the big picture for space missions and systems
2. Working technical knowledge of how all the elements of a space mission work and the key trades that lead to a successful mission
3. Enhanced introduction to system architecture and design
4. Practical experience with using data and systems engineering processes in the space technology series to develop conceptual designs for space missions and systems
5. Mission and systems design verification and validation
6. Establishing an framework for future space learning

References:

System Identification, 45749

Prerequisite: Flight Dynamics I and II, 45156 and 45157; Airplane Design I and II, 45177 and 45118

Course Objectives:

This course is offered to graduates, flight test engineers, simulation engineers, control system designers, aircraft designers, flying qualities engineers and anyone who like to identify trustworthiness of mathematical models based on measured data from an experiment, or understand how it is done. Topics covered include: introduction to the identification process, time-domain approach for identification of time-invariant systems, frequency domain method and Kalman filter.

Syllabus:

1. Introduction to System Identification
 - Introduction and Brief History
 - Nonparametric vs. Parametric Methods
 - Model Parameterization and Prediction
 - Frequency Response and Time Response Methods
 - Basic Steps in the Identification Process

2. Collection of Time History Data, Data Consistency and Reduction
 - Overview of Data Requirements for System Identification
 - Conditions on the Data Set and Commonly Used Input Signals
 - Optimal Input and Recommended Pilot Inputs for Frequency-Response Identification

3. Nonparametric Frequency Domain Identification
 - Instrumentation Requirements and Flight Testing Considerations
 - Piloted Frequency Sweeps
 - System Identification Testing of Off-line Simulation Models
 - Modeling Measurement Errors in Flight Test Data Consistency and Identifiability (Kinematic Consistency Methods, Translational Consistency, Detection of Faulty Data)
 - The Correlation Approach

 - Transient Response Analysis
 - Fourier Analysis
 - Spectral Analysis
 - Estimating the Disturbance Spectrum
 - Frequency-Response Analysis and Identification (Fourier Transform and Spectral
Chapter 3: Syllabus of the Courses

4. Transfer Function Modeling
- Motivations for Transfer Function Modeling
- Selection of Input-Output Variable Pair
- Pendulum example
- Handling Qualities Applications
- Flight Dynamics Identification (Fixed and Rotary Wing)

5. State-Space Model Identification
- State-Space Model Structure
- Identification Cost Function and Solution Algorithm
- Accuracy Analysis
- Cramer-Rao Inequality and Bounds
- Physical Model Structure
- Accurate Determination of Stability and Control Derivatives from Nonlinear Simulation Using System Identification
- Identification of a 3-DOF Longitudinal Model of a Fixed-Wing UAV

6. Complementary Topics
- Recursive Estimation Methods
- Choice of Identification Criterion
- Verification of Identification Methods
- Minimizing Prediction Error
- Linear Regression and Least Square Estimation
- A Statistical Framework for Parameter Estimation and Maximum Likelihood Method
- Kalman Filter Interpretation

Course Outcome:
At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Experiment design, instrumentation, data analysis, modeling, and validation
2. Building mathematical models for aircraft dynamics based on measured flight data
3. Identifiability and robustness
4. The use of the software on real flight data (and to interpret results)

References:

Appendix A- List of all AE Courses

In this appendix, all courses, being taught by the department of aerospace engineering are listed.

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Name</th>
<th>Prerequisite & Corequisite</th>
<th>Level</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>45000</td>
<td>PHD QUALIFYING EXAM</td>
<td></td>
<td>Ph.D.</td>
<td>0</td>
</tr>
<tr>
<td>45001</td>
<td>RESEARCH PROPOSAL</td>
<td></td>
<td>Ph.D.</td>
<td>0</td>
</tr>
<tr>
<td>45030</td>
<td>AER ROBOT WORKSHOP 1</td>
<td>Prerequisite: 45132</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45040</td>
<td>COMPOSITE MAT LAB</td>
<td></td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45041</td>
<td>STRUCTURE LAB</td>
<td>Prerequisite: 45133</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45050</td>
<td>AERODYNAMICS LAB 1</td>
<td>Prerequisite: 45115 or 28487</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45070</td>
<td>ENGINE WORKSHOP 1</td>
<td>Prerequisite: 45134</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45071</td>
<td>ENGINE WORKSHOP 2</td>
<td>Prerequisite: 45117</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45080</td>
<td>INSTRUMENTATION WRKSHP</td>
<td>Prerequisite: 45135</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45081</td>
<td>AIRFRAME WORKSHOP</td>
<td>Prerequisite: 45136</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45082</td>
<td>INSTRUMENT LAB 2</td>
<td>Prerequisite: 45416</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45085</td>
<td>CONTROL SYSTEM LABORATORY</td>
<td>Prerequisite: 45135</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45090</td>
<td>MODEL A/C WORKSHOP 1</td>
<td></td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45091</td>
<td>MODEL A/C WORKSHOP 2</td>
<td></td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45112</td>
<td>STATICS</td>
<td>Prerequisite: 24011 and 22015</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45113</td>
<td>DYNAMICS</td>
<td>Prerequisite: 45112</td>
<td>B.Sc.</td>
<td>4</td>
</tr>
<tr>
<td>45114</td>
<td>NUMERICAL METHODS</td>
<td>Prerequisite: 40151 and 22034</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45115</td>
<td>AERODYNAMICS 1</td>
<td>Prerequisite: 45124 or 28461 and 45132 or 28414</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>--</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45116</td>
<td>AERODYNAMICS 2</td>
<td>Prerequisite: 45115 or 28487</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45117</td>
<td>PROPULSION PRIN</td>
<td>Prerequisite: 45134 Corequisite: 45116</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45118</td>
<td>AIRCRAFT DESIGN 2</td>
<td>Prerequisite: 45177 or 28479</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45119</td>
<td>NUMERICAL METHODS</td>
<td>Prerequisite: 22015 and 40151 or 40153</td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45124</td>
<td>FLUID MECHANICS 1</td>
<td>Corequisite: 22034</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45125</td>
<td>THERMODYNAMICS 2</td>
<td>Prerequisite: 45134 or 28161</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45126</td>
<td>HEAT TRANSFER 1</td>
<td>Prerequisite: 22035 Corequisite: 45134 or 28161</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45132</td>
<td>INTRO TO AEROSPACE</td>
<td>Prerequisite: 31123</td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45133</td>
<td>STRENGTH OF MATERIALS</td>
<td>Prerequisite: 45112 or 28261</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45134</td>
<td>THERMODYNAMICS 1</td>
<td>Prerequisite: 24011 Corequisite: 45124</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45135</td>
<td>AUTOMATIC CONTROL</td>
<td>Prerequisite: 45144 or 28568</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45136</td>
<td>A/C STRUCTURAL ANALYSIS</td>
<td>Prerequisite: 45133</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45137</td>
<td>A/C STRUCTURAL DSGN</td>
<td>Prerequisite: 45136 or 28955</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45144</td>
<td>VIBRATIONS</td>
<td>Prerequisite: 45113 or 22034 and 28567</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45145</td>
<td>CAD 1</td>
<td>Prerequisite: 40151 or 40153</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45153</td>
<td>AERO TECH LANGUAGE</td>
<td>Prerequisite: 31101 or 31124</td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45154</td>
<td>MATERIALS SCIENCE</td>
<td>Prerequisite: 45133 or 28262</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45156</td>
<td>FLIGHT DYNAMICS 1</td>
<td>Prerequisite: 45115 or 45113 and 28487 or 28567</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45157</td>
<td>FLIGHT DYNAMICS 2</td>
<td>Prerequisite: 45156 or 45135 and 28481 or 28416</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45177</td>
<td>AIRCRAFT DESIGN 1</td>
<td>Prerequisite: 45116 or 28476 or 45157 or 28446</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45400</td>
<td>INDUSTRIAL TRAINING</td>
<td></td>
<td>B.Sc.</td>
<td>0</td>
</tr>
<tr>
<td>45401</td>
<td>COMPOSITE MATERIALS</td>
<td>Prerequisite: 45133 or 28262</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------</td>
<td>---</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45402</td>
<td>HELICOPTER AERODYN</td>
<td>Prerequisite: 45115</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45403</td>
<td>EXPERIMENTAL AERODYN</td>
<td>Prerequisite: 45115</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45404</td>
<td>PROPELLER THEORY</td>
<td>Prerequisite: 45116 or 28476</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45405</td>
<td>VISCOSOUS FLOW</td>
<td>Prerequisite: 45115 or 28487</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45406</td>
<td>INTRO TO CFD</td>
<td>Prerequisite: 45119 or 45116</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45407</td>
<td>ORBITAL MECHANICS</td>
<td>Prerequisite: 45113 or 22034 and 28567</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45408</td>
<td>INTERNAL COMB ENGINE</td>
<td>Prerequisite: 45134 or 28161</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45409</td>
<td>FUEL & COMBUSTION</td>
<td>Prerequisite: 45134 or 28161</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45410</td>
<td>ROCKET PRINCIPLES</td>
<td>Prerequisite: 45117 or 28482</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45411</td>
<td>TURBOMACHINERIES</td>
<td>Prerequisite: 45125 or 28162 and 45116 or 28476</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45412</td>
<td>INDUSTRIAL MANAGEMENT</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45413</td>
<td>SATELLITE SYSTEMS</td>
<td>Prerequisite: 45135 or 28416</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45414</td>
<td>AUTO SYS IN SPACE</td>
<td>Prerequisite: 45135 or 28416</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45415</td>
<td>MATERIALS & CONSTR METDS</td>
<td>Prerequisite: 45133 or 28262</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45416</td>
<td>PRECISION INSTRUMENT 1</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45417</td>
<td>MICROPROCESSOR 1</td>
<td>Prerequisite: 25091</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45418</td>
<td>INTRO FINITE ELEMENT METD</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45419</td>
<td>AVIONICS</td>
<td></td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45420</td>
<td>AEROSPACE TECH TRANSFER</td>
<td></td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45421</td>
<td>STRENGTH OF MATERIALS 2</td>
<td>Prerequisite: 45133</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45422</td>
<td>PILOT TRAINING</td>
<td></td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45424</td>
<td>VISCOSOUS FLOW</td>
<td>Prerequisite: 45124</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>45425</td>
<td>INTRO MISSILE DESIGN</td>
<td></td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45426</td>
<td>MANUFACTURING METHODS</td>
<td></td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45427</td>
<td>MACHINE DESIGN 1</td>
<td>Prerequisite: 45133 or 28262</td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45428</td>
<td>LIQ ROCKET ENGINE DSGN</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45429</td>
<td>SPACE ENG PRIN</td>
<td>Prerequisite: 45132</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45430</td>
<td>ORG & ENG ETHICS</td>
<td></td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45431</td>
<td>AERO GAS TURB ENG DESIGN</td>
<td>Prerequisite: 45124 and 45134 or 28161 and 28461</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45432</td>
<td>ENGINEERING ECONOMICS</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45500</td>
<td>BSC PROJECT</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45510</td>
<td>ADV MATH 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45511</td>
<td>ADV MATH 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45515</td>
<td>ADV NUMERICAL METHODS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45520</td>
<td>CONTINUM MECHANICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45525</td>
<td>PERTURBATIONS THEORY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45530</td>
<td>ENERGY METHODS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45531</td>
<td>CONTINUOUS SYS VIBRATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45532</td>
<td>NONLINEAR VIBRATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45535</td>
<td>SELF STUDY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45536</td>
<td>RESEARCH METHODS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45540</td>
<td>AEROSPACE TECH MNGMT</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45541</td>
<td>STRATEGIC MNGMT IN AEROSP</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>----------------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45545</td>
<td>ADV DYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45550</td>
<td>NON-THESIS RES PROJ</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45560</td>
<td>MSC THESIS</td>
<td></td>
<td>M.Sc.</td>
<td>6</td>
</tr>
<tr>
<td>45600</td>
<td>MSC SEMINAR</td>
<td></td>
<td>M.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45605</td>
<td>ADV THERMODYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45610</td>
<td>ADV FUEL & COMB</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45615</td>
<td>GAS DYNAMICS 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45616</td>
<td>GAS DYNAMICS 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45620</td>
<td>ADV TURBOMACHINERY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45622</td>
<td>NUM METH IN TURBOMACH</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45625</td>
<td>MISSILE AEROTHERMODYN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45630</td>
<td>COMBUSTION INSTABILITY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45635</td>
<td>ACOUSTICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45637</td>
<td>THERMOACoustics</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45640</td>
<td>ADV HEAT TRANSFER</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45641</td>
<td>RADIATION HEAT TRANSFER</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45643</td>
<td>CONVECTION HEAT TRANSFER</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45645</td>
<td>ADV PROPULSION PRIN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45699</td>
<td>SP TOPICS IN PROPULTION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45700</td>
<td>MSC PROJECT</td>
<td></td>
<td>M.Sc.</td>
<td>6</td>
</tr>
<tr>
<td>45705</td>
<td>ADV FLIGHT DYNAMICS 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45706</td>
<td>ADV FLIGHT DYNAMICS 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>45710</td>
<td>ADV AUTOMATIC CONTROL</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45715</td>
<td>NAVIGATION & GUIDANCE 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45716</td>
<td>NAVIGATION & GUIDANCE 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45720</td>
<td>FLIGHT TEST PRINCIPLES</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45725</td>
<td>MISSILE FLIGHT DYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45730</td>
<td>CONTROL SYS DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45733</td>
<td>ADV AIRCRAFT DESIGN</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45734</td>
<td>MISSILE CONFIG DESIGN</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45735</td>
<td>FUZZY CONTROL</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45736</td>
<td>ADV CONCEPTS A/C DSGN</td>
<td>Prerequisite: 45118 and 45177</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45738</td>
<td>ADV. AIRCRAFT PERFORMANCE</td>
<td>Prerequisite: 45156</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45740</td>
<td>HELICOPTER FLIGHT DYN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45743</td>
<td>AERO GAS TURB ENG CONTROL</td>
<td>Prerequisite: 45117 and 45135</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45745</td>
<td>FLIGHT SIMULATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45746</td>
<td>DYNAMICAL SYSTEMS</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45747</td>
<td>MODELING AEROSPACE DYN SYS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45748</td>
<td>NONLINEAR SYS ANALYSIS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45749</td>
<td>SYSTEM IDENTIFICATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45750</td>
<td>MULTIVARIABLE CONTROL</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45755</td>
<td>DIGITAL CONTROL</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45760</td>
<td>ADAPTIVE CONTROL</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45765</td>
<td>OPTIMAL CONTROL 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45766</td>
<td>OPTIMAL CONTROL 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45770</td>
<td>HEURISTIC OPTIM ALGORITHMS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45775</td>
<td>NEURAL NETWORKS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45777</td>
<td>APPL OF REMOTE SENSING</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45779</td>
<td>SPACE PROPULSIONS</td>
<td>Prerequisite: 45417</td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45780</td>
<td>SPACECRAFT DYN & CONTR</td>
<td>Prerequisite: 45407</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45781</td>
<td>LAUNCH VEHICLE SYS DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45782</td>
<td>SATELLITE SYSTEM DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45783</td>
<td>ATT & ORBIT DETERMINATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45784</td>
<td>ADV ORBITAL MECHANICS</td>
<td>Prerequisite: 45407</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45785</td>
<td>SPACE SYSTEMS ENGINEERING</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45799</td>
<td>SP TOPICS IN FLIGHT DYN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45805</td>
<td>ADV VISCIOUS FLOW 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45806</td>
<td>ADV VISCIOUS FLOW 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45809</td>
<td>FLUID FLOW CONTROL</td>
<td>Prerequisite: 45805</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45810</td>
<td>TURBULENCE</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45811</td>
<td>SHEAR LAYER TURBULENCE</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45813</td>
<td>TURBULENCE SIMULATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45815</td>
<td>SUBSONIC AERODYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45816</td>
<td>SUPersonic AERODYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45817</td>
<td>HYPERSONIC AERODYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>45818</td>
<td>ADV AERODYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45820</td>
<td>UNSTEADY AERODYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45825</td>
<td>GRID GENERATION METHODS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45830</td>
<td>CFD 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45831</td>
<td>CFD 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45832</td>
<td>FINITE ELEMTS METD IN FLUID</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45834</td>
<td>ADV HELICOPTER AERODYN</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45835</td>
<td>KINETIC THEORY OF GAS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45836</td>
<td>AERODY OF WIND TURBINES</td>
<td>Prerequisite: 45115</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45837</td>
<td>INTAKE AERODYNAMICS</td>
<td>Prerequisite: 45116 and 45117</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45840</td>
<td>MICRO_NANO FLOWS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45899</td>
<td>SP TOPICS IN AERODYN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45900</td>
<td>PHD THESIS</td>
<td></td>
<td>Ph.D.</td>
<td>24</td>
</tr>
<tr>
<td>45905</td>
<td>ADV STRUCTURAL ANALYSIS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45910</td>
<td>AEROElasticity</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45915</td>
<td>ADV AIRCRAFT DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45920</td>
<td>FINITE ELEM METHOD 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45921</td>
<td>FINITE ELEM 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45923</td>
<td>BOUNDARY ELEMENT METHOD</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45925</td>
<td>ADV STRUCTURAL DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45930</td>
<td>ADV COMPOSITE MATERIALS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>----------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>45932</td>
<td>SPACE STRUCT MATERIALS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45935</td>
<td>FRACT FATIG CREEP</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45937</td>
<td>MECH BEHAVIOR OF MAT</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45938</td>
<td>NANO MECHANICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45940</td>
<td>METALLORY IN MANUF</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45945</td>
<td>ADV MACHINE DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45946</td>
<td>ADV COMPUTATIONAL DYN</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45947</td>
<td>SHELL & PLATE THEORY</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45950</td>
<td>ADV OPTIMIZATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45951</td>
<td>MULTIPHASE FLOWS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45955</td>
<td>STRUCTURAL DYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45957</td>
<td>MODAL ANALYSIS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45960</td>
<td>ADV MAT & MANUF PROC</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45965</td>
<td>VISCOELASTICITY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45970</td>
<td>JIG & FIXTURE DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45973</td>
<td>EXP STRESS ANALYSIS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45975</td>
<td>FRACTURE MECHANICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45980</td>
<td>PHD THESIS</td>
<td></td>
<td>Ph.D.</td>
<td>24</td>
</tr>
<tr>
<td>45999</td>
<td>SP TOPICS IN AEROS STRUCT</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45AP0</td>
<td>ADVISOR PROFESSOR</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45AP2</td>
<td>ADVISOR PROFESSOR</td>
<td></td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45TA0</td>
<td>TEACHING ASSISTANT</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
</tbody>
</table>