Sharif University of Technology
Department of Aerospace Engineering

Master Program in Flight Dynamics and Control

27th October 2015
Table of Contents

Chapter 1: Department of Aerospace Engineering ... 1

Chapter 2: Overall Program .. 2

Chapter 3: Syllabus of the Courses .. 4

Advanced Aircraft Performance, 45738 ... 4
Advanced Automatic Control, 45710 .. 6
Advanced Concepts in Design, 45736 .. 8
Advanced Flight Dynamics I, 45705 ... 10
Advanced Mathematics I, 45510 ... 12
Control Systems Design, 45730 ... 15
Flight Simulation, 45745 ... 19
Flight Test Principles, 45720 ... 20
Fuzzy Control, 45735 ... 22
Guidance and Navigation I, 45715 ... 24
Helicopter Flight Dynamics, 45740 ... 27
Heuristic Optimization Algorithms, 45770 .. 29
Missile Flight Dynamics, 45725 ... 32
Modeling of Aerospace Dynamic Systems, 45747 .. 35
Multivariable Control, 45750 ... 37
Neural Networks, 45775 ... 40
Optimal Control I, 45765 ... 42
Optimal Control II, 45766 .. 45
Spacecraft Dynamics and Control, 45780 .. 48
System Identification, 45749 .. 51
Appendix A- List of all AE Courses ... 54
Chapter 1: Department of Aerospace Engineering

The Department of Aerospace Engineering at Sharif University of Technology initiated its degree programs in 1987 as the Aerospace Engineering Group, part of the Mechanical Engineering Department. In 1999, the Aerospace Engineering Group separated from the Mechanical Engineering Department and continued its activities as an independent department.

In accordance with the general SUT philosophy, the faculties in Aerospace Engineering are a selected group from the world’s most prestigious universities providing an atmosphere of expertise and collaboration that is unparalleled in other universities. Our faculty works closely with those in Mechanical Engineering, Applied Physics, and Electrical Engineering.

The graduate programs on M.Sc. and PhD level were established in 1993 and 1996, respectively. Since then, these programs have been continuously offered in four subjects of Flight Dynamics and Control, Aerodynamics, Propulsion and Structure. The master program in Space Engineering was also established in 2010.

Professors of the flight dynamics and control division perform their research activities in different fields including: design of flying vehicles, flight trajectory design and optimization, flight simulation, statistical analysis of flying vehicles, multi-disciplinary design optimization, design and analysis of flight tests, stability analysis and control of flying vehicles, aerospace robotics, design of intelligent guidance and control systems, instrumentation, aerospace system identification, analysis of multi-body dynamics, swarm intelligence, navigation systems, heuristic algorithms, etc.

This document introduces the master program in Flight Dynamics and Control for interested students and other parties.
Chapter 2: Overall Program

This chapter presents an overview on the master program in Flight Dynamics and Control. The general requirements of this program are as in table 1. Tables 2 and 3 present the list of main and elective technical courses, respectively.

Table 1 General Requirements of Flight Dynamics and Control division

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>At least four courses from Table 2</td>
<td>12</td>
</tr>
<tr>
<td>At least three courses from Table 3</td>
<td>9</td>
</tr>
<tr>
<td>M.Sc. Thesis</td>
<td>6</td>
</tr>
<tr>
<td>M.Sc. seminar or another course from Table 3</td>
<td>2</td>
</tr>
<tr>
<td>Minimum required units for graduation</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 2 Main Technical Courses

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Automatic Control</td>
<td>45710</td>
</tr>
<tr>
<td>Advanced Aircraft Design / Advanced Concepts in Design</td>
<td>45915 / 45736</td>
</tr>
<tr>
<td>Advanced Flight Dynamics I</td>
<td>45705</td>
</tr>
<tr>
<td>Guidance and Navigation I</td>
<td>45715</td>
</tr>
<tr>
<td>Modeling of Aerospace Dynamic Systems</td>
<td>45747</td>
</tr>
</tbody>
</table>
Table 3 Elective Technical Courses

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Control</td>
<td>45760</td>
</tr>
<tr>
<td>Advanced Aircraft Performance</td>
<td>45738</td>
</tr>
<tr>
<td>Aerospace Technology Management</td>
<td>45540</td>
</tr>
<tr>
<td>Avionics</td>
<td>45419</td>
</tr>
<tr>
<td>Control Systems Design</td>
<td>45730</td>
</tr>
<tr>
<td>Digital Control</td>
<td>45755</td>
</tr>
<tr>
<td>Flight Simulation</td>
<td>45745</td>
</tr>
<tr>
<td>Flight Test Principles</td>
<td>45720</td>
</tr>
<tr>
<td>Fuzzy Control</td>
<td>45735</td>
</tr>
<tr>
<td>Guidance and Navigation II</td>
<td>45716</td>
</tr>
<tr>
<td>Helicopter Flight Dynamics</td>
<td>45740</td>
</tr>
<tr>
<td>Heuristic Optimization Algorithms</td>
<td>45770</td>
</tr>
<tr>
<td>Missile Configurative Design</td>
<td>45734</td>
</tr>
<tr>
<td>Missile Flight Dynamic</td>
<td>45725</td>
</tr>
<tr>
<td>Multi Variable Control</td>
<td>45750</td>
</tr>
<tr>
<td>Neural Networks</td>
<td>45775</td>
</tr>
<tr>
<td>Nonlinear Systems Analysis</td>
<td>45748</td>
</tr>
<tr>
<td>Optimal Control I</td>
<td>45765</td>
</tr>
<tr>
<td>Optimal Control II</td>
<td>45766</td>
</tr>
<tr>
<td>Spacecraft Dynamics and Control</td>
<td>45780</td>
</tr>
<tr>
<td>System Identification</td>
<td>45749</td>
</tr>
</tbody>
</table>

Max. one course from:
- Other technical courses in the group,
- Technical courses in other groups,
- Any other course approved by the group.
Chapter 3: Syllabus of the Courses

In this chapter, syllabus of each course is presented in detail.

Advanced Aircraft Performance, 45738

Prerequisite: Flight Dynamics I, 45156

Course Objectives:
Increase of the population and the rising demands for air transportation has opened new issues in air transportation and has changed the attitude on the performance of the aircrafts and the way of using them. As a result, this course focuses on better usage of the aircrafts and tries to provide a condition to design better aircrafts from the performance point of view. The main mentality in this course is keeping the air transportation economic in front of other kinds of transportation. Moreover, other topics such as optimality of flight path, sound pollution, formation flights and aerial traffic are also discussed as well as flight safety.

Syllabus:

1. Introduction and Basic Concepts
 - Performance Theory and Performance Problems
 - Nature of Passengers and Cargo Loads
 - Airport Issues
 - Airline Issues
 - Geographical Issues
 - Climate Issues
 - Aircraft Navigation Systems Issues
 - Economic Issues

2. Mathematics and Performance Problems
 - Application of Calculus of Variations in Performance Problems
 - Lagrange Problems
 - Meyer Problems
 - Bolza Problems
 - State-Space Formulation
 - Application of the Control Theory
 - Singular Perturbations

3. Energy State Formulation
Chapter 3: Syllabus of the Courses

• Overview
• Equation of motion and Performance Integrals
• Quasi-Linear Maneuvers
• Graphical Methods
• Transition Flights
• Supersonic Problems

4. Special Problems
• Optimal Trajectory in Wind-Fields
• Discrete Dynamic Programming for Airline
• Sequential Decision Making
• Reduced Order Model for Trajectory Optimizations
• Issues in Formation Flights
• Free Flight Concept
• Continuous Descent Approach
• Airspace Saturation

Course Outcome:

After completion of this course the student can understand:

1. Some basic issues in aircrafts performance,
2. The mathematical modeling of an aircraft performance problem,
3. How to solve an aircraft performance problem using the calculus of variation method.

References:

2. Writtenberg, H.; *Advanced Topics in Aircraft Performance Optimization.*
3. *Class notes of Delf University of Technology.*
4. *Class notes of University of Kansas.*
Advanced Automatic Control, 45710

Prerequisite: Automatic Control, 45135; Advanced Mathematics I, 45510

Course Objectives:
This course is intended for senior/graduate students on linear and multivariable control system design. The students will utilize the time-domain state space representation, which is a convenient way to model and analyze systems with multiple inputs and outputs. Mathematical modeling, state space formulation, design procedure and analysis of control systems are covered throughout the course.

Syllabus:

1. Linear Algebra
 - Basics and Vector Spaces
 - Functions of a Square Matrix
 - Systems of Linear Equations
 - Inversion Lemma and Cayley Hamilton Theorem

2. Linear Systems
 - State Variable and Linearization
 - State Space Representation
 - State Transition Matrix
 - Similarity Transformations
 - Modal Matrix and Modal Decomposition
 - (Block) Diagonalization
 - Companion and Jordan Canonical Forms
 - Generalized Eigenvectors
 - Solution of Linear Time-Invariant State Space Equations

3. Controllability and Observability
 - Controllability and Observability Concepts
 - Internal Stability
 - Controllability Indices
 - Observability Indices
 - Duality in Linear Systems
 - Output Controllability

4. Realization Theory
 - Introduction
 - Minimal Realization
 - Controller/ Controllability Canonical Realization
 - Observer/ Observability Canonical Realization
 - Parallel and Series Systems
 - Realization of Multi-Input Multi-Output Systems
Chapter 3: Syllabus of the Courses

5. Stability
- Definitions
- Lyapunov Theory
- Generalized Energy Function
- Stability of LTI (Linear Time Invariant) Systems

6. State Feedback Techniques
- Output and State Feedback
- State Feedback Design (Bass and Gura, Ackermann’s Formula, Controller Canonical)
- Regulator Design
- Tracker Design (Integral Control Technique, Precompensator or Feedforward Technique)

7. State Estimators
- Observer Dynamics
- Full-Order Observer Design
- Reduced-Order Observer Design
- Feedback from Estimated States

8. Optimal Control of Linear Systems
- Definitions
- Matrix Riccati Equation
- Optimal Control Formulation by Quadratic Integral Criterion (Lyapunov’s 2nd Method)

Course Outcome:
At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Linearization and State Space Formulation,
2. Controllability, Observability and Realization of Dynamic Systems,
3. Stability Analysis,
4. State Feedback Controller Design,
5. Observer Design,
6. (LQR) Linear Quadratic Regulator Design.

References:
Advanced Concepts in Design, 45736

Prerequisite: Aircraft Design I and II, 45177 and 45118

Course Objectives:

For years, design was a kind of art that only some people had it. In this point of view, design is some sort of personal rather than educable issue. After some experience, design was portrayed in the context of decision in engineering. In this way, the experts needs to understand the decision method of a designer. In spite of these things, they did not believe that someone should be brought up to be a designer. The new technologies, developed in recent years, push a serious need to train engineers for design as well as to train designers. Today, design has been demonstrated as design science. The objective of this course is to pass through these histories and educate design science so that students learn methods and the logic of design science and be aware of designer responsibilities.

Syllabus:

1. Basic Concepts and Definitions
 - Basic Definitions
 - History of Design
 - Basics of Decision Making
 - Technology Driven Design
 - Innovative Design
 - Passive Design Vs. Active Design
 - Mental Design

2. Fundamentals of Design for Safety
 - Understanding Safety and Dynamics of Safety
 - Accepted Level of Safety

3. Accident and Accident Investigation
 - Definition
 - Dynamics of Accidents
 - Accident Model
 - In-house Investigation
 - Independent Investigation
 - Accident Reporting
 - Punishment

 - Safety Management
 - Risk Management
 - Safety Program
 - Safety Investigation (Audit & Reporting)
 - Design for Safety Process
4. Design for Humankind
 - Basics of Human Design
 - Drivers
 - Technology Life-Cycle
 - Economic Life-Cycle
 - Success and Failures
 - Reliability
 - Maintainability
 - Robustness
 - Fault Tree Analysis
 - Modeling Design
 - Process
 - Challenges

5. Axiomatic Design
 - Four Basic Domains
 - Relationship between Domains
 - Principles of Axiomatic Design
 - Model Design Process
 - Challenges

6. System Approach to Design
 - Isolated Design Vs. System Design
 - Stakeholders Dynamics and Decision Making
 - System levels and Interfaces
 - Modes/ States/ Phases

7. Course Case Studies

Course Outcome:
After completion of this course the student can understand:

1. Basic concepts of decision making,
2. methods and the logic of design science and
3. The responsibilities of being a designer.

References:
Advanced Flight Dynamics I, 45705

Prerequisite: Flight Dynamics II, 45157

Course Objectives:
This course is offered to MSc students, studying in flight dynamics and control, and tries to extend the knowledge and skills they have previously obtained in Flight Dynamics II. Within the advanced topics, covered in this course, one can refer to the new materials on nonlinear dynamic analysis, analysis of coupling dynamics, pilot model, pilot rating, dynamic analysis of elastic flying vehicles, dynamic effects of atmospheric disturbances, design of control system and special topics on flight dynamics of unconventional flying vehicles.

Syllabus:

1. A Short Review on Basic Principles of Flight Dynamics
 - Static Stability
 - Linear Stability Analysis
 - Controllability of Steady State Flights
 - Dynamic Stability
 - Sensitivity Analysis of Dynamic Modes
 - Inertia and Dynamic Couplings

2. Nonlinear Stability Analysis of Flying Vehicles
 - Validation of Linear Equations of Motion
 - Nonlinear Simulation

3. Dynamic Analysis of an Elastic Flying Vehicle
 - Lyapunov Stability Analysis and Krasovski Method
 - Generation of Lyapunov Functions
 - Energy Method
 - Phase Space and Velocity Vector Method
 - Modeling of Elastic Behaviors: Static and Dynamic
 - Transfer Functions of an Elastic Flying Vehicle
 - Aerodynamic Coefficients of an Elastic Flying Vehicle
 - Equivalent Elastic Model
Chapter 3: Syllabus of the Courses

- Stability and Control
 Derivatives of an Elastic
 Flying Vehicle

4. Flying Vehicle Response
 within Atmospheric
 Disturbances
- Different Types of
 Atmospheric Disturbances
- Deterministic Atmospheric
 Disturbances
- Introduction to Stochastic
 Variables
- Stochastic Atmospheric
 Disturbances
- Response of a Flying
 Vehicle to Turbulence

5. Dynamic Analysis of a
 Manned Flying Vehicle
- Description Model of a
 Human Pilot
- Pilot as a Controller
- Flying and Handling Quality
 Concepts and Regulations
- Pilot Model in the Control
 Loops
- Pilot Induced Oscillations

6. Flight Control Systems
- Classification
- Open-loop Analysis of Flying
 Vehicles
- Stability Augmentation
 Loops
- Autopilots
- Control Allocation

Course Outcome:
At the conclusion of this course the student will be able to utilize the new
topics for advanced dynamic analysis of more complicated flying vehicles than
conventional aircrafts and in more details than they have previously obtained
in flight dynamics II.

References:
1. Roskam, J.; Airplane Flight Dynamics and Automatic Flight Control,
3. Pamadi; Performance, Stability, Dynamics, and Control of Airplanes,
Advanced Mathematics I, 45510

Course Objectives:
This course starts with an introduction to the vector space, linear transformations and some applications of linear space. In the second section, the metric space and normed space are discussed, we introduced some norms, Banach space and fixed point theorem and some application of this theorem in engineering problems. Inner product space and orthogonality theorem and application of this theorem are presented in another section. Operator equations, Sturm-Liouville theorem and minimum functional theorem, variational formulations of boundary value problems are discussed in a fourth section. In the final section, we introduced approximated methods for boundary value problems such as the Ritz, Bubnov-Galerkin, Least Squares, Kantrovich and Terfetz methods.

Syllabus:

1. Vector Space and its Application
 - General Comments and Notations
 - Supremum and Infimum of Sets
 - Functions
 - The Field of Scalars
 - Linear Vector Spaces and Subspaces
 - Linear Dependence and Independence of Vectors
 - Span, Basis and Dimension
 - Linear Transformations
 - Linear, Bilinear, and Quadratic Forms
 - Kernel, Image and Nullity
 - Some Applications of Linear Space

2. Normed Space and its Applications
 - Function Space and Metric Space
 - Holder and Minkowski Inequalities
 - Normed Space and Definition of Different Norms
 - Continuous and Bounded Linear Transformations
 - Complete Normed Space: Banach Space
 - Fixed Point Theorem
 - Application of a Fixed Point Theorem for Solving of Linear Equations
 - Application of a Fixed Point Theorem for Solving of
Chapter 3: Syllabus of the Courses

13

3. Inner Product Space and its Applications
- Inner Product Space and Cauchy-Schwarz Inequality
- Orthogonal Vectors, Complements and Projection
- Hilbert space
- Orthonormal Bases and Generalized Fourier Series
- Gram-Schmidt Theorem
- Orthogonal Projection Theorem
- Legendre, Laguerre, Hermite Polynomials
- Best Approximation in Hilbert Space
- Optimal Estimation of Random Signals

4. Variational Formulations of Boundary Value Problems
- Operator Equation
- Representation of Linear Functionals
- Self Ajoint Operators
- Sturm-Liouville Theorem
- The Minimum Functional Theorem
- Concepts from Variational Calculus
- Natural and Essential Boundary Conditions
- Non-homogeneous Boundary Conditions
- Problem with Equality Constraints and Lagrange Multipliers
- The Penalty Function Method
- Optimal Control Problems

5. Variational Methods of Approximation
- The Ritz Method
- Convergence and Stability
- The Weighted-Residual Method
- The Bubnov-Galerkin Method
- The Method of Least Squares
- The Kantrovich Method
- The Terffetz Method

Course Outcome:

At the conclusion of this course the student will be able to demonstrate an understanding of:
1. Linear space and its application in many engineering problems such as eigenvalue problem, linear differential equations, and so on,

2. Metric space, normed space, orthogonally theorem, and best approximation in Hilbert space and its application and

3. The minimum functional theorems and variational methods of approximation for solving of boundary value problems and its application.

References:

Chapter 3: Syllabus of the Courses

Control Systems Design, 45730

Course Objectives:
This course has been designed to familiarize graduated students with principles of designing systems and control elements of airplanes and missiles. At the first, history of control systems is presented. Afterward, airplanes and missiles control systems elements are introduced and control systems are investigated from different viewpoints including design topics and phases. Next chapter concentrates on aerodynamic considerations of control systems and thrust vectoring as well. Servomechanisms design and usage is studied subsequently. In the next chapter, sensors as an important parts of control systems are studied. Transformation functions of different channels are obtained utilizing linearization of equations of motion. Static and dynamic stability and different modes of motion is analyzed later. Consequently, different methods of control system design in time and frequency domains are presented. Flight computer design principles and it’s software considerations is discussed in advance. At the end of the course, complementary materials of control systems are studied.

Syllabus:

1. Introduction to Flight Control Systems Design
 - Main Components, Design Objectives and Design Cycle of Flight Control Systems
 - Open Loop and Closed Loop Control Systems
 - Feedback Effects on Control Systems
 - Different Feedback Control Systems

2. Continuous and Discontinuous Control Systems
 - Analog, Digital and Logical Control
 - Industrial Controllers
 - Summarization

2. Introduction to Flight Control Systems
 - History
 - Guidance, Navigation and Control
 - Flight Control Channels
3. Aerodynamic Considerations of Flight Control Systems
- Static and Dynamic Stability
- Stability and Maneuverability
- Stability Static Margin
- Pressure Center Variation
- Hinge Moment
- Aeroelasticity Effects

4. Control Systems Performance
- Tail Control System
- Wing Control System
- Canard Control System
- Aerodynamic Surfaces Configuration Effects
- Aerodynamic Surfaces Sizing
- Lateral Jet Control
- Thrust Vector Control
- Mass and C.G. Variation Effects

5. Flight Control Actuators
- Servomechanisms
- Hydraulic Actuators
- Pneumatic Actuators
- Gas Actuators
- Electrical Actuators

6. Flight Control Sensors
- Accelerometers
- Gyros
- Angle of Attack Sensor
- Other Sensors
- Sensor Selection

7. A Review on Controller Design
- Controller Design Objectives
- Design with Frequency Response
- Design with Root Locus
- Design with Pole Placement
- Design with State Space
- Design in Time Domain

8. Linearization of Equations of Motion and Obtaining Flying Vehicle Transfer Functions
- Coordinate Systems
- Equations of Motion
- Roll, Yaw and Pitch Channels Transfer Function

- STT, BTT and RA Missiles Introduction and Their Properties
Chapter 3: Syllabus of the Courses

- STT Missiles Lateral and Roll Channel Control System Design
- BTT Missiles Lateral Control System Design
- MIMO Control System Design
- One Channel Flight Control System Design

10. Control System Design for Airplanes
- Airplane Longitudinal and Lateral Control
- Attitude Control Systems
- Flight Path Control Systems
- Active Flight Control

11. Thrust Vector Control Systems Design
- Classifications and Applications
- Mathematical Modeling

12. Flight Computer Design Principles
- Design Requirements
- Design Input and Outputs
- Key points in Flight Computer Software Selection
- Flight Programming

13. Complementary Materials
- Sensitivity Analysis
- Man’s Effect in the Loop
- Parameter Optimizations
- Digital Controllers Design

Course Outcome:
At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Control systems elements of missiles and airplanes
2. Design Objectives and Methods of control system design
3. Design control systems for different channels of missile and airplanes

References:

Flight Simulation, 45745

Course Objectives:
The subject of computer modeling and simulation of dynamics of aerospace vehicles has evolved into a major discipline in recent years. This new discipline is used not only in the design process but also in the development and improvement of performance and operation of civil and military aircraft and missiles. This course, as a second part of the subject, discusses in great detail the various types of simulations for aerospace vehicles for three-, five-, and six-degree-of-freedom system, including real time simulators.

Syllabus:

1. Three-Degree-of-Freedom Simulation
 - Equations of Motion
 - Subsystem Models
 - Simulations

2. Five-Degree-of-Freedom Simulation
 - Pseudo-Five-DoF Equations of Motion
 - Subsystem Models

3. Six-Degree-of-Freedom Simulation
 - Six-DoF Equations of Motion
 - Subsystem Models
 - Monte Carlo Analysis

4. Real Time Applications
 - Flight Simulator
 - Hardware-in-the-loop Facility
 - War gaming

Course Outcome:
In this course, students learn how to derive the equations of motion for the aerospace vehicles with different degrees of freedom and how to implement them on computer.

References:
Flight Test Principles, 45720

Prerequisite: Flight Dynamics I and II, 45156 and 45157; Airplane Design I and II, 45177 and 45118

Course Objectives:

This course deals with the Fundamentals of Flight Test Engineering in a comprehensive format. Academics and Flight Test Techniques for Performance, Stability, and Systems flight testing will be covered, along with Ground Testing, Flight Test Instrumentation, Data Acquisition and System Safety.

Syllabus:

1. Introduction, Test Team and Support
 - Why Flight Test?
 - Flight Test Phase
 - Certification Flight Test
 - Flight Test Operation
 - Flight Test Organization

2. Instrumentation and Data Processing
 - Airborne and Ground Systems
 - Instrumentation Management
 - Data Processing

3. Planning, Discipline and Safety Aspects
 - Test Plan
 - Risk Assessment Matrix
 - Crew Considerations

4. Pre-Flight Tests
 - Wind Tunnel Tests

5. Air data Measurement and Calibration
 - Standard Atmosphere (T,p,ρ)
 - Pitot-static System (h,V)
 - Static Position Calibration

6. Climb, Descent and Turn Performance Test
 - The Energy Approximation
 - Performance Climb Procedures
 - Turn Performance Flight Test Techniques
 - Instrumentation
Chapter 3: Syllabus of the Courses

7. Cruise Performance Tests
 - Foundations
 - Endurance
 - Cruise Performance Test Methods
 - Instrumentation

8. Takeoff and Landing Tests
 - Performance Equations
 - Takeoff Flight Test Methods
 - Landing Flight Test Methods
 - Instrumentation

9. Static Stability Tests
 - Concepts of Static Stability
 - Longitudinal static Stability Test Methods

10. Dynamic Stability Tests
 - Equations of Motion
 - Longitudinal Dynamics
 - Lateral-Directional Dynamics
 - Dynamics Flight Test Method
 - Instrumentation

11. System Identification
 - Introduction and History
 - General Regression
 - Frequency Response Methods

Course Outcome:

At the conclusion of this course the student will be able to demonstrate an understanding of:

1. The fundamentals required for performing the duties of a Flight Test Engineer
2. Flight-test methods through preparation of flight-test reports
3. Flight-test data analysis

References:

Fuzzy Control, 45735

Course Objectives:
This graduate course concerns fuzzy logic for automatic control. The course objectives are to teach the basics of fuzzy logic, to show how to use fuzzy logic, and to teach how to design a fuzzy controller. Some advanced topics on fuzzy controllers are also covered.

Syllabus:

1. Introduction, Definitions and Concepts
 - Intelligent Control
 - Fuzzy Logic
 - Fuzzy Control
 - Fuzzy Mathematics
 - Applications
 - Rule Base
 - Fuzzy Sets
 - Fuzzy System
 - Classic Versus Fuzzy Control System Design
 - An Example of Fuzzy Control

2. Fuzzy Mathematics
 - Fuzzy Sets and Membership Functions
 - Mathematical Operations on Fuzzy Sets
 - Fuzzy Relations
 - Linguistic Variables
 - Fuzzy Rules
 - Approximate Reasoning

3. Fuzzy Systems
 - Fuzzy Rule Base

4. Design of Fuzzy Systems Using Input-Output Data
 - Fuzzy Inference Engine
 - Fuzzifier
 - Defuzzifier
 - Mathematical Representations of Fuzzy Systems
 - The Approximation Properties of Fuzzy Systems

5. Design of Fuzzy Controllers
 - Trial and Error Approach
 - Control surface of a fuzzy controller
 - Stable Fuzzy Controllers
 - Optimal Fuzzy Controllers
 - Robust Fuzzy Controllers
 - Fuzzy System as Sliding Mode Control
 - Fuzzy Sliding Mode Control
• Fuzzy Supervisory Control
• Fuzzy Gain Scheduling
• TSK Fuzzy Systems

Course Outcome:

Upon completion of this course the students will be able to:

1. Utilize the state of the art topics of fuzzy control in their research activities.
2. Design fuzzy systems and fuzzy controllers

References:

Guidance and Navigation I, 45715

Prerequisite: Flight Dynamics II, 45157; Automatic Control, 45135

Course Objectives:

The objective of this course is to introduce the students the essential knowledge and skills they need to analyze and design various guidance and navigation systems. The course is broken into two parts that deal with both subjects of guidance and navigation. In the first part, the common tactical and strategic guidance algorithms, utilized in aerospace vehicles, are introduced. The second part covers the principles of radio and inertial navigation systems.

Syllabus:

1. Introduction, Definitions and Concepts
 - Guidance, Navigation and Control
 - Elements of a Guidance System
 - Guidance Phases
 - Guidance Trajectories
 - Guidance Sensors

2. Classification of Guidance and Navigation Systems
 - Basic Navigation Systems
 - Combined Navigation Systems
 - Classification of Guidance Systems

3. Three-point Guidance Laws
 - Line-of-Sight Guidance Laws in BR systems

4. Two-point Guidance Laws
 - Command to Line-of-Sight Guidance
 - CLOS Guidance with Lead Angle
 - Combined Lead and LOS Guidance Laws
 - Three-dimensional Implementation of CLOS Guidance

 - Pursuit Guidance
 - Proportional Navigation Guidance
 - 3D Implementation
 - Analytical Solution of TPN
 - Simulation of PN
 - Performance of TPN
 - Comparison of Beam Rider and PN
 - Proportional Navigation Command Guidance
 - Proportional Navigation Inertial Guidance
• Implementation of Proportional Navigation Guidance
• Linearization of PN
• Analysis of the Homing Loop Using Adjoint Theory
• TPN versus APN
• Optimal Two-point Guidance
• Pulsed Guidance

5. Ballistic Guidance Laws
• Ballistic Trajectories
• Required Velocity
• Gravity Turn
• Lambert Problem
• Velocity to be Gained
• Cross Product Steering
• Lambert Guidance
• General Energy Management (GEM) Steering
• Explicit Versus Implicit Guidance
• Q and Q* Guidance
• Preset Guidance

6. UAVs Guidance Laws
• UAV Guidance Problems
• Application of Tactical Guidance Laws in UAVs
• Trajectory Tracking
• Terrain Following/Terrain Avoidance
• Cooperative Missions

7. Principles of Inertial Navigation
• Components
• Two-dimensional Navigation
• Coordinate Systems
• 3D Strapdown Navigation System
• Strapdown System Mechanizations
• Attitude Representation
• Navigation Equations in Component Form
• Effects of Elliptic Earth

8. Inertial Sensors
• Gyroscope principles
• Single-axis Rate Gyroscope
• Accelerometers
• Force balanced sensors

• Test Equipments
• Calibration of Accelerometers
• Calibration of Rate Gyros
• Hardware-in-the-loop Simulation

10. Initial Alignment
• Coarse Alignment
• Fine Alignment
Course Outcome:

Upon completion of this course, the students will be able to analyze and design guidance and navigation systems for aerospace vehicles.

References:

Helicopter Flight Dynamics, 45740

Course Objectives:

Helicopter is a vertical take-off and landing flying vehicle with complicated and coupled dynamics. This course discusses some basic concepts in Rotor Aerodynamics, Helicopter Performance and Design, Modeling of Flight Dynamics, and Stability and Control.

Syllabus:

1. Fundamentals of Helicopter Aerodynamics
 - Introduction
 - Momentum Analysis in Axial Flight
 - Axial Climb and Descent
 - Momentum Analysis in Forward Flight
 - Blade Element Analysis in Hover and Axial Flight
 - Blade Element Momentum Theory
 - Blade Element Analysis in Forward Flight

2. Dynamics of Blade Motion
 - Introduction
 - Types of Rotors
 - Blade Flapping Motion
 - Blade Feathering Motion
 - Blade Lagging Motion
 - Swashplate Mechanism
 - Coupling Flap-lag and Flap-Pitch Motion

3. Basic Helicopter Performance

4. Conceptual Design of Helicopters
 - Introduction
 - Design Requirement
 - Design of the Main Rotor
 - Fuselage Design
 - Empennage Design
 - Design of Tail Rotors
 - High Speed Rotorcraft

5. Modeling Helicopter Flight Dynamics
 - Introduction
 - Helicopter Nonlinear Equations of Motion
 - Equations of Equilibrium, Trim conditions
• Helicopter Linearized Equations of Motion
• Stability Derivatives
• Lateral and Directional Modes in Hover and Forward Flight
• Control Response in Hover and Forward Flight
• Response to Vertical Gusts

Course Outcome:
In this course, students will be familiarized with the fundamentals of helicopter flight dynamics and learn how to use theoretical methods in order to calculate the flight characteristics of a helicopter and how to simulate and analyze its dynamic behavior.

References:
Heuristic Optimization Algorithms, 45770

Course Objectives:
In this course, the modern heuristic optimization algorithms such as Evolutionary Algorithms, Ant Colony Optimization, Simulated Annealing, Tabu Search and Particle Swarm Optimization is introduced with a concentration on the application of these algorithms in aerospace problems. The course begins with a classification of the optimization problems and the definition of the primary concepts such as discrete and continuous search domains, multi-objective optimization, dynamic optimization, global optimization, stochastic optimization and swarm intelligence. Then some heuristic methods is introduced in detail including the basic and original algorithms, characteristics, adaptation to constrained and multi-objective problems, parallelization and successful aerospace applications. The course ends with some miscellaneous and complementary materials such as parameter tuning techniques, rotated search domains, hybrid metaheuristics, etc.

Syllabus:

1. Introduction, Definitions and Concepts
 - Optimization
 - Operations/Operational Research (OR)
 - Optimization and Engineering
 - Definition of an Optimization Problem
 - Feasibility Problem
 - Classification of the Optimization Problems
 - Classification of the Optimization Techniques
 - Heuristic Algorithms vs. Metaheuristics
 - Nature-Inspired Optimization
 - Population-Based Optimization
 - Swarm Intelligence
 - Parallel Algorithms
 - An Overview of Mathematical Optimization

2. An Overview of Heuristic Optimization Algorithms
 - Random Search
 - Simplex Algorithm
 - Neighborhood Search
 - Hill Climbing Methods
 - Greedy Algorithms
 - Simulated Annealing
 - Tabu Search
 - Evolutionary Algorithms
 - Ant Colony Optimization
Chapter 3: Syllabus of the Courses

3. Simulated Annealing
 - Real Annealing and Simulated Annealing
 - Metropolis Algorithm
 - Simulated Annealing Algorithm
 - Convergence of Simulated Annealing
 - Continuous Simulated Annealing
 - One-loop Simulated Annealing
 - Temperature Scheduling
 - Parallelization of Simulated Annealing Algorithms
 - Multi-objective Simulated Annealing
 - Constrained Simulated Annealing
 - Applications

4. Tabu Search
 - Basic Tabu Search
 - Short-term Memory
 - Long-term Memory
 - Continuous Tabu Search
 - Diversification and Intensification
 - Parallelization
 - Constrained Tabu Search
 - Multi-objective Tabu Search
 - Applications

5. Evolutionary Algorithms
 - Definitions
 - Drivers of Evolution
 - Genetic Algorithms
 - Steady State GAs
 - Memetic Algorithms
 - Estimation of Distribution Algorithms
 - Differential Evolution
 - Parallelization
 - Evolutionary Multi-objective Optimization
 - Constrained Evolutionary Optimization
 - Adaptive Evolutionary Algorithms
 - Applications

6. Ant Colony Optimization
 - Definitions
 - Collective Behavior of Social Insects
 - Basic ACO Algorithms
 - Pheromones and Memory
 - Ant Algorithms for TSP
 - Adaptation to Continuous Problems
 - Parallelization of ACO algorithms
 - Multi-objective ACO
 - Adaptation to Constrained Problems
 - Applications

7. Particle Swarm Optimization
 - Basic Idea
 - Canonical PSO Algorithm
 - Neighborhood Topologies
 - Continuous and Constrained PSO
 - Multi-objective PSO
 - Parallelization of PSO Algorithms
Chapter 3: Syllabus of the Courses

- Applications

8. Miscellaneous and Complementary Topics
 - Normalization
 - Test Functions
 - Tuning the Parameters of the Optimization Algorithms
 - Correlation Handling

Course Outcome:
At the conclusion of this course the student will be able:

1. Utilize state of the art heuristic optimization algorithms in their research activities.
2. Design and propose new and hybrid optimization algorithms.
3. Customize heuristic optimization algorithms for special applications

References:

Missile Flight Dynamics, 45725

Course Objectives:
This course is defined to familiarize aerospace graduated students with missile vibrational behavior analysis and also development of equations of motion. This course fundamentally considers dynamic behavior of rockets and missiles with analytical view. Sources of errors affecting on the dispersion of missiles are considered and the required criterion for comparing their dynamics are presented. Flight simulations with different degrees of freedom are developed and then linear and angular motions based on similar dynamic systems are developed. Equations of motion using both Lagrange’s and Newton’s approach are developed in various coordinate systems. Dynamic stability regions are analytically determined and evaluated.

Syllabus:

1. Introduction to Flight Dynamics
 - Terms and definitions
 - Coordinate Systems
 - Types of Simulations (One, Two ..., Six Degree of Freedom)
 - Difference Between Applications of Simulation and Flight Dynamics
 - Introduction to Equations of Motion Using Lagrange and Euler Approaches

2. Equations of Linear Motion
 - Horizontal Flight Considering Drag
 - Vertical Flight Considering Drag and Gravity Forces
 - Two Degree of Freedom Flight in Vacuum
 - Two Degree of Freedom Flight Considering Drag and Gravity Forces
 - Horizontal Flight Considering Thrust Force Without Drag (Variable Mass)
 - Vertical Flight Considering Thrust Force Without Drag (Variable Mass)
 - Horizontal Flight Considering Thrust and Drag Forces (Variable Mass)

3. Rigid Body Angular Motion
 - Simple Pendulum Motion
 - Complex Pendulum Motion
 - Spherical Pendulum Motion
 - Pendulum Motion
 - Pendulum Motion
 - Pendulum Motion
Chapter 3: Syllabus of the Courses

4. Simple Angular Motion
 - Constrained Pitching Motion Considering Static Aerodynamic Forces and Dynamic Stability Analysis
 - Constrained Pitching Motion Considering Static and Dynamic Aerodynamic Forces and Dynamic Stability Analysis
 - Stability Derivatives Determination Using Pitching Motion Analysis

5. Pitching and Heaving Motion
 - Pitching and Heaving Equations of Motion Considering Gravity Force
 - Dynamic Stability Analysis

6. Pitching, Heaving, Yawing and Swerving Motion
 - Pitching, Heaving, Yawing and Swerving Equations of Motion
 - Dynamic Stability Analysis

7. Rolling Motion
 - Rolling Motion of Missiles Flying With Constant Speed
 - Rolling Motion Velocity Half-Life
 - Retardation Motion with Rolling
 - Rolling Stability Derivatives Determination Using Rolling Motion Data

8. General Rigid Body Motion and Stability
 - Wobbling Coordinate Systems
 - Complete Motion With Static Fluid Forces
 - Complete Angular Motion With Static Fluid Forces
 - Complete Angular Motion With Static And Dynamic Fluid Forces
 - Free Flight Motion With Static And Dynamic Fluid Forces

9. Missile Dynamics Transfer Functions
 - Pitch Channel Transfer Function
 - Yaw Channel Transfer Function
 - Roll Channel Transfer Function

10. Flexible Body Equations of Motion

11. Flight Performance Analysis
Course Outcome:

The outcomings of this course are development in:

1. Analyzing the vibrational motion of missiles
2. Analyzing the dynamic behavior of rockets and missiles
3. Modeling the angular motion of different types of missiles
4. Deriving the equations of motion in various coordinate systems
5. Determining the stability regions of dynamic motion
6. Analyzing the sources of dispersion
7. Analyzing the performance of flight of Missiles

References:

Modeling of Aerospace Dynamic Systems, 45747

Course Objectives:
The subject of computer modeling and simulation of dynamics of aerospace vehicles has evolved into a major discipline in recent years. This new discipline is used not only in the design process but also in the development and improvement of performance and operation of civil and military aircraft and missiles. This course, as a first part of the subject, discusses the theoretical concepts that provide mathematical foundation for the simulation of aerospace systems. This includes frames of reference and coordinate systems, kinematics of translation and rotation, translational and attitude dynamics, as well as perturbation techniques used for modeling.

Syllabus:

1. Introduction to the subject
 - Virtual Engineering
 - Modeling of Flight Dynamics
 - Simulation of Aerospace Vehicles

2. Mathematical Concepts in Modeling
 - Classical Mechanics
 - Tensor Elements
 - Modeling of Geometry

3. Frames and Coordinate Systems
 - Frames
 - Coordinate Systems

4. Kinematics of Translation and Rotation
 - Rotation Tensor

5. Translational Dynamics
 - Linear Momentum
 - Newtonian Dynamics
 - Transformations
 - Simulation Implementation

6. Attitude Dynamics
 - Inertia Tensor
 - Angular Momentum
 - Euler’s Law
 - Gyrodynamics

7. Perturbation Equations
 - Perturbation Techniques
 - Linear and Angular Momentum Equations
• Aerodynamic Forces and Moments
• Perturbation Equations of Steady Flight
• Equations of Unsteady Flight

Course Outcome:
In this course students learn how to formulate the dynamic behavior of aerospace vehicles in a concise mathematical form and how to convert this model into a computer code.

References:
Multivariable Control, 45750

Course Objectives:
This course is designed to familiarize graduated student with multivariable control. At the first, the nature of multivariable systems will be discussed. All Representation of multivariable systems will be studied later. In advance, Extension of SISO frequency domain concepts such as gain, bandwidth, etc. to multivariable systems will be taught. Generalization of frequency domain stability analysis to multivariable systems is another subject of this course. At the end of course, design techniques for multivariable systems based on the frequency domain will be considered.

Syllabus:

1. Aims of Control
 - Input-output response
 - Stability
 - Noise Suppression
 - Small Parameter Variations
 - Large Parameter Variations
 - Interactions

2. The Sensitivity Function
 - Open Loop Control
 - Closed Loop Control
 - Model Uncertainty
 - Disturbance Rejection

3. Structure for Control
 - One-degree of Freedom Control
 - Two-degree of Freedom Controllers
 - Design of Single loop Two Degree of Freedom Control Systems.

4. Introduction to Multivariable Systems
 - Loop Interaction
 - The Need for Multivariable Control

5. Measures of Multivariable Gain
 - Vector Norms and Induced Norms
 - The Singular Value Decomposition
 - System Norms

6. Linear System Models:
 - Representations and Standard Forms
 - The State-space Description
 - State-space Standard Forms and Realization
 - Transfer Function Matrix Standard Forms
Chapter 3: Syllabus of the Courses

- Matrix Function Description
- Reosenbrock’s System Matrix
- Transformation of system Matrices
- Summary of Transformations

7. Controllability and Observability
- Controllability
- Observability
- Decoupling Zeros
- Realizations and Reconstruction

8. Poles and Zeros of MIMO Systems
- Poles of a System
- Zeros of a System
- Cancelations, Stabilizability, and Detectability

9. Multivariable Model Handling Techniques
- Interconnections and Operations

10. Model Error Reduction
- System Gramians
- Order Reduction Methods

11. Multivariable Interaction
- Measures of Interaction for Constant Matrices
- Extension of Interaction Measures to Dynamical Systems

12. Stability of MIMO Systems
- Internal Stability
- The Generalized Nyquist Stability Criterion
- The Gain Space
- Performance and Robustness Limits

13. Simply Structured Design
- The Nyquist Array Design Method
- Structure of Multivariable Systems
- Achieving Diagonal Dominance

14. Case Studies
- A Chemical Reactor
- A Reheat Furnace
- An Islanded Distributed Generation Unit
- The Automotive Gas-turbine
- The Rolls Royce Spey Gas-turbine Engine
- Level Control Systems
- Gasifier Challenge Problem

Course Outcome:
After studying this course, the student would be able to demonstrate an understanding of:

1. Nature of multivariable system interactions
2. Representation of multivariable systems and the associated canonical forms with each representation

3. Extension of SISO frequency domain concepts such as gain, bandwidth, etc to multivariable systems

4. Generalization of frequency domain stability analysis to multivariable systems.

5. An understanding of design versus synthesis techniques and a review of design techniques for multivariable systems based on the frequency domain.

References:

Neural Networks, 45775

Prerequisite: Advanced Mathematics I, 45510

Course Objectives:
This course gives an introduction to basic neural network architectures and learning rules. Emphasis is placed on the mathematical analysis of these networks, on methods of training them and their application to practical engineering problems in such areas as pattern recognition, signal processing and control systems. The course is organized for the senior or graduate level students and they will be able to implement and simulate network models using MATLAB.

Syllabus:

1. Neuron Model and Network Architectures
 - Notation
 - Neuron Models
 - Network Architectures

2. Vector Spaces and Linear Transformations
 - Linear Vector Spaces
 - Linear Independence
 - Spanning a Space
 - Inner Product
 - Norm
 - Orthogonality
 - Vector Expansions
 - Linear Transformations
 - Matrix Representations
 - Change of Basis
 - Eigenvalues and Eigenvectors

3. Fundamental Structures for Pattern Recognition and Clustering

4. Perceptron Learning Rule
 - Learning Rules
 - Perceptron Architecture
 - Perceptron Learning Rule
 - Proof of Convergence

5. Hebbian Learning
 - Linear Associator
 - The Hebb Rule
 - Pseudoinverse Rule
 - Variations of Hebbian Learning

6. Performance Optimization
 - Necessary Conditions for Optimality
 - Quadratic Functions
 - Steepest Descent
Chapter 3: Syllabus of the Courses

Chapter 3: Syllabus of the Courses

7. Widrow-Hoff Learning
 - ADALINE Networks
 - Mean Square Error
 - LMS Algorithm
 - Analysis of Convergence
 - Adaptive Filtering

8. Hopfield Network
 - Hopfield Model
 - Lyapunov Function
 - Effect of Gain
 - Hopfield Design

9. Backpropagation
 - Multilayer Perceptron

10. Competitive Networks
 - Hamming Network
 - Competitive Layer
 - Learning Vector Quantization
 - Grossberg Network

Course Outcome:

At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Neural network architectures, learning rules, and training techniques
2. Design of neural networks
3. Neural network application to practical engineering problems

References:

Optimal Control I, 45765

Prerequisites: Automatic Control, 45135; Differential Equations, 22016

Course Objectives:

This course is designed to introduce the theoretical and algorithmic fundamentals of deterministic optimal control (OC) that is implementable for solution and analysis of continuous/discrete dynamic systems. In this framework, optimal policy generally refers to optimal control input signals, optimal guidance strategies and/or optimal trajectories that minimize a generalized performance index under various constraints.

As OC methodologies can be utilized in many fields such as science and engineering, the course starts with a general definition and formulation of the OC problem and introduction of common performance functions. The method of dynamic programming based on the Bellman’s principle of optimality is one of the conventional solution schemes used for OC, and as such its concept is initially discussed for discrete systems and subsequently generalized to cover all other systems. Calculus of variation (CV) is another solution approach for OC problems that is also attended to as a major topic in this course. Upon conceptual introduction of functional, extremal, variation and the fundamental principle of CV, a two point boundary value problem (TPBVP) evolves for the derivation of extremals. Application of CV for two widespread problems of quadratic regulator and tracking results in the so called Ricatti equation for linear systems that is easily implementable. The concluding materials cover modeling state and control constraints using the Pontryagin’s minimum principle. Other direct optimization approaches such as nonlinear programming (NLP) will also be introduced.

Syllabus:

1. Introduction
 - Optimal Control Problem
 Introduction and Formulation
 - System Classification and Control Laws

2. Performance Measures
 - Conventional Performance Measures
 - Selection and Weighting Functions

3. Dynamic Programming (DP)
Chapter 3: Syllabus of the Courses

- OC Policy Definition and Bellman’s Optimality Principle
- Recurrence Relation for DP
- DP for Linear/ Nonlinear, Discrete/ Continuous Systems
- Hamilton-Jacobi-Bellman Equation

4. Calculus of Variation (CV)
- Basic Concepts and Related Mathematics
- Definition of Functional and Variations
- Fundamental Principle of CV and the Euler’s Equation (TPBVP)
- Functionals of Several Functions
- Generalized Boundary Conditions
- Constrained and Cornered Extremals

5. Application of CV to OC Problems
- Necessary Equations for OC Problems

- Hamiltonian and the Generalizing Boundary Equations
- Linear Quadratic Regulator (LQR) and Tracking (LQT) Problems
- Pontryagin’s Minimum Principle for Control Constrained Problems
- Explicit Modeling of State Inequality Constraints
- Singular Intervals
- Minimum Time OC and the Switching Functions

6. Numerical Methods for OC
- Review of the Basic TPBVP
- Steepest Descent and Variation of Extremals
- Quasilinearization and Gradient Projection
- Sequential Quadratic Programming
- Shooting method and Multiple SM
- Levenberg-Marquardt Method

Course Outcome:
Upon successful completion of this course the student have gained the following understanding and capabilities:

4. Modeling and formulation of OC problems for all dynamic systems
5. CV and its utility in constrained optimization of cost functions
6. Optimal controller design using the DP and CV approaches
7. Ability to solve LQR and LQT as typical widespread OC problems
8. A basic familiarity with various gradient based numerical optimization schemes
References:

Optimal Control II, 45766

Prerequisite: Optimal control I, 45765

Course Objectives:

This course combines the role of two basic level courses in probability theory and random processes to pave the way for a basic introductory course in stochastic systems (SS) and optimal estimation. In this sense, some basic fundamentals of probability theory, random variables and processes are initially reviewed. Upon introduction of Gaussian processes and the Markov properties, prior statistical analysis (SA) of stochastic systems with no measurements is addressed. Differentiation of white and colored process noise is highlighted and the concept of shaping filter for conversion is reviewed.

Subsequently, with addition of the measurement units, the least square error (LSE) parameter estimation method that leads to conceptual development of discrete time linear Kalman filter (KF) for noise removal (out of measured data) is introduced. The LSE KF is next extended to nonlinear measurement models and also augmented with system equations to establish what is called the secondary SA or optimal estimation for stochastic systems with measurements. Filter implementations for nonlinear and/or hybrid system and measurement models are generalized. In this respect the linearized and (LKF) and extended Kalman filters (EKF) are covered.

Additionally, several related topics such as filter divergence, stationary processes and the concept of noise and/or parameter modeling for stochastic estimation will be discussed. The problem of optimal smoothing and prediction as well as optimal control in presence of uncertainty (LQG) concludes the major topics intended for coverage in this course.

Syllabus:

1. Review of Statistical Concepts
 - Discrete and Continuous Random Variables
 - Discrete and Continuous Random Vectors

2. Introduction to Random Process
 - Multivariate Probability Functions and Conditional Distributions
• Correlation and Power Spectral Density Functions
• Stationary Process, White Noise and Simulation
• Random Sequences and Markov Properties
• Gauss-Markov Random Processes

3. Stochastic Systems and Covariance Analysis
• Mean and Covariance Propagation
• Colored Noise and Shaping Filters
• Discrete and Continuous Systems
• Error Analysis of Linear Systems
• Error Models for Measuring Systems
• Monte-Carlo Simulation

4. Optimal Filtering and Prediction
• State Estimation Concept and Criteria
• Cramer-Rao Inequality

• Least Square Estimation (Ordinary, Weighted, Recursive)
• Filtering and the Measurement Effect
• Kalman Filters for Linear Systems (Discrete/Continuous)
• Linearized (LKF) and Extended Kalman Filters (EKF) for Non-Linear Systems
• Filter Divergence

5. Optimal Prediction and Smoothing
• Smoothing for Single and Multistage Processes
• Various Forms of Smoothing

6. Optimal Control in Presence of Uncertainty
• Linear Quadratic Gaussian Regulators
• Average Behavior of Controlled Systems

7. Special topics
• Nonlinear Filtering
• Adaptive Estimation

Course Outcome:
Upon conclusion of this course the students have gained the following understanding and/or capabilities:

1. Familiarity with random process and their statistical properties.
2. Stochastic systems and covariance analysis.
3. Least square weighted estimation.
4. State estimation via batch or recursive Kalman filters for linear/nonlinear systems.
5. Parameter estimation and system identification.
6. Filter divergence and remedies.
7. Optimal control of uncertain systems with measurement models.

References:

Spacecraft Dynamics and Control, 45780

Prerequisite: Orbital Mechanics, 45407

Course Objectives:

The attitude kinematics and rigid-body dynamics of satellites in free Newtonian space and in an orbit around Earth are introduced. The different attitude representations and their differential equation as well as the Euler's dynamic equation are derived. The motion of rigid-body without external torque and in presence of external torque is discussed. Furthermore, the passive and active attitude stabilization and control of satellite in the orbit using gravity gradient, magnetic actuation, momentum exchange devices and reaction thrusters are taught. Moreover, the basic attitude determination concepts and formulas are introduced.

Syllabus:

1. Introduction and Overview
 - Introduction to Orbital Mechanics and Attitude Dynamics
 - Two-Body Problem
 - Coordinate Systems
 - Orbital Maneuvers
 - Orbital Perturbations

2. Attitude Kinematics
 - Description of Attitude Kinematics Using Reference Frames
 - Rotation Matrices
 - Euler Angles
 - Euler's Eigenaxis Rotation
 - Euler Parameters/Quaternions
 - Gibbs Parameters
 - Kinematic Differential Equations

3. Rigid Body Rotational Dynamics
 - Equations of Motion for Rigid Satellites
 - Angular Momentum
 - Euler's Equations
 - Moments of Inertia and Principal Axes

4. Torque-Free Motion
 - Torque-Free Motion of an Axisymmetric Rigid Body
 - General Torque-Free Motion
 - Stability of Torque-Free Motion About Principal Axes

5. Body-Fixed Torque Motion
• Spinning Axisymmetric Body with Constant Body-Fixed Torque
• Asymmetric Rigid Body with Constant Body-Fixed Torques
• Linear Stability of Equilibrium Points
• Nonlinear Analysis of Constant Torque About the Major or Minor Axis
• Nonlinear Analysis of Constant Torque About the Intermediate Axis

6. Rigid Body in a Circular Orbit
• Equations of Motion
• Linear Stability Analysis
• Dual-Spin Satellite
• Passive Damping of a Dual-Spinner

7. Attitude Control and Stabilization
• Gravity Gradient Stabilization
• Time Behavior of Pure GG stabilization
• GG Stabilization with Passive Dampers
• GG Stabilization with Active Magnetic Damping

• Attitude Control in Space (Slew Maneuvers)
• Quaternion Feedback Control
• Control using Reaction/Momentum Wheel
• Control using Control Moment Gyro (CMG)
• Control using Thruster and Pulse Modulation
• Control using Magnetic Actuation

8. Attitude Determination
• Introduction of Attitude Sensors
• Describing the Measurements Required to Determine the Attitude of a Spacecraft
• Basic Attitude Determination Algorithms (Triad, q-Method, QUEST)

9. Advanced Topics
• Design of ADCS (Attitude Determination and Control Subsystem)
• Tethered Satellites
• Effects of Flexibility

Course Outcome:
After studying this course, the student would be able to demonstrate an understanding of:

1. Different attitude representations
2. Attitude dynamics in orbit
3. Different attitude control using satellite actuators
References:

System Identification, 45749

Prerequisite: Flight Dynamics I and II, 45156 and 45157; Airplane Design I and II, 45177 and 45118

Course Objectives:
This course is offered to graduates, flight test engineers, simulation engineers, control system designers, aircraft designers, flying qualities engineers and anyone who like to identify trustworthiness of mathematical models based on measured data from an experiment, or understand how it is done. Topics covered include: introduction to the identification process, time-domain approach for identification of time-invariant systems, frequency domain method and Kalman filter.

Syllabus:

1. Introduction to System Identification
 - Introduction and Brief History
 - Nonparametric vs. Parametric Methods
 - Model Parameterization and Prediction
 - Frequency Response and Time Response Methods
 - Basic Steps in the Identification Process

2. Collection of Time History Data, Data Consistency and Reduction
 - Overview of Data Requirements for System Identification

 - Conditions on the Data Set and Commonly Used Input Signals
 - Optimal Input and Recommended Pilot Inputs for Frequency-Response Identification
 - Instrumentation Requirements and Flight Testing Considerations
 - Piloted Frequency Sweeps
 - System Identification Testing of Off-line Simulation Models
 - Modeling Measurement Errors in Flight Test Data Consistency and Identifiability (Kinematic Consistency Methods, Translational Consistency, Detection of Faulty Data)
 - The Correlation Approach
Chapter 3: Syllabus of the Courses

3. Nonparametric Frequency Domain Identification
 - Transient Response Analysis
 - Fourier Analysis
 - Spectral Analysis
 - Estimating the Disturbance Spectrum
 - Frequency-Response Analysis and Identification (Fourier Transform and Spectral Functions, Coherence Function)
 - SISO Frequency-Response Analysis and Identification
 - MISO/MIMO Identification

4. Transfer Function Modeling
 - Motivations for Transfer Function Modeling
 - Selection of Input-Output Variable Pair
 - Pendulum example
 - Handling Qualities Applications
 - Flight Dynamics Identification (Fixed and Rotary Wing)

5. State-Space Model Identification
 - State-Space Model Structure
 - Identification Cost Function and Solution Algorithm
 - Accuracy Analysis
 - Cramer-Rao Inequality and Bounds
 - Physical Model Structure
 - Accurate Determination of Stability and Control Derivatives from Nonlinear Simulation Using System Identification
 - Identification of a 3-DOF Longitudinal Model of a Fixed-Wing UAV

6. Complementary Topics
 - Recursive Estimation Methods
 - Choice of Identification Criterion
 - Verification of Identification Methods
 - Minimizing Prediction Error
 - Linear Regression and Least Square Estimation
 - A Statistical Framework for Parameter Estimation and Maximum Likelihood Method
 - Kalman Filter Interpretation

Course Outcome:
At the conclusion of this course the student will be able to demonstrate an understanding of:

1. Experiment design, instrumentation, data analysis, modeling, and validation
2. Building mathematical models for aircraft dynamics based on measured flight data
3. Identifiability and robustness
4. The use of the software on real flight data (and to interpret results)

References:

Appendix A- List of all AE Courses

In this appendix, all courses, taught by the department of aerospace engineering, are listed.

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Name</th>
<th>Prerequisite & Corequisite</th>
<th>Level</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>45000</td>
<td>PHD QUALIFYING EXAM</td>
<td></td>
<td>Ph.D.</td>
<td>0</td>
</tr>
<tr>
<td>45001</td>
<td>RESEARCH PROPOSAL</td>
<td></td>
<td>Ph.D.</td>
<td>0</td>
</tr>
<tr>
<td>45030</td>
<td>AER ROBOT WORKSHOP 1</td>
<td>Prerequisite: 45132</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45040</td>
<td>COMPOSITE MAT LAB</td>
<td></td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45041</td>
<td>STRUCTURE LAB</td>
<td>Prerequisite: 45133</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45050</td>
<td>AERODYNAMICS LAB 1</td>
<td>Prerequisite: 45115 or 28487</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45070</td>
<td>ENGINE WORKSHOP 1</td>
<td>Prerequisite: 45134</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45071</td>
<td>ENGINE WORKSHOP 2</td>
<td>Prerequisite: 45117</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45080</td>
<td>INSTRUMENTATION WKSHP</td>
<td>Prerequisite: 45135</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45081</td>
<td>AIRFRAME WORKSHOP</td>
<td>Prerequisite: 45136</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45082</td>
<td>INSTRUMENT LAB 2</td>
<td>Prerequisite: 45416</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45085</td>
<td>CONTROL SYSTEM LABORATORY</td>
<td>Prerequisite: 45135</td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45090</td>
<td>MODEL A/C WORKSHOP 1</td>
<td></td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45091</td>
<td>MODEL A/C WORKSHOP 2</td>
<td></td>
<td>B.Sc.</td>
<td>1</td>
</tr>
<tr>
<td>45112</td>
<td>STATICS</td>
<td>Prerequisite: 24011 and 22015</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45113</td>
<td>DYNAMICS</td>
<td>Prerequisite: 45112</td>
<td>B.Sc.</td>
<td>4</td>
</tr>
<tr>
<td>45114</td>
<td>NUMERICAL METHODS</td>
<td>Prerequisite: 40151 and 22034</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------</td>
<td>--</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45115</td>
<td>AERODYNAMICS 1</td>
<td>Prerequisite: 45124 or 28461 and 45132 or 28414</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45116</td>
<td>AERODYNAMICS 2</td>
<td>Prerequisite: 45115 or 28487</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45117</td>
<td>PROPULSION PRIN</td>
<td>Prerequisite: 45134 Corequisite: 45116</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45118</td>
<td>AIRCRAFT DESIGN 2</td>
<td>Prerequisite: 45177 or 28479</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45119</td>
<td>NUMERICAL METHODS</td>
<td>Prerequisite: 22015 and 40151 or 40153</td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45124</td>
<td>FLUID MECHANICS 1</td>
<td>Corequisite: 22034</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45125</td>
<td>THERMODYNAMICS 2</td>
<td>Prerequisite: 45134 or 28161</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45126</td>
<td>HEAT TRANSFER 1</td>
<td>Prerequisite: 22035 Corequisite: 45134 or 28161</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45132</td>
<td>INTRO TO AEROSPACE</td>
<td>Prerequisite: 31123</td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45133</td>
<td>STRENGTH OF MATERIALS</td>
<td>Prerequisite: 45112 or 28261</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45134</td>
<td>THERMODYNAMICS 1</td>
<td>Prerequisite: 24011 Corequisite: 45124</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45135</td>
<td>AUTOMATIC CONTROL</td>
<td>Prerequisite: 45144 or 28568</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45136</td>
<td>A/C STRUCTURAL ANALYSIS</td>
<td>Prerequisite: 45133</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45137</td>
<td>A/C STRUCTURAL DSGN</td>
<td>Prerequisite: 45136 or 28955</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45144</td>
<td>VIBRATIONS</td>
<td>Prerequisite: 45113 or 22034 and 28567</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45145</td>
<td>CAD 1</td>
<td>Prerequisite: 40151 or 40153</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45153</td>
<td>AERO TECH LANGUAGE</td>
<td>Prerequisite: 31101 or 31124</td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45154</td>
<td>MATERIALS SCIENCE</td>
<td>Prerequisite: 45133 or 28262</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45156</td>
<td>FLIGHT DYNAMICS 1</td>
<td>Prerequisite: 45115 or 45113 and 28487 or 28567</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45157</td>
<td>FLIGHT DYNAMICS 2</td>
<td>Prerequisite: 45156 or 45135 and 28481 or 28416</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45177</td>
<td>AIRCRAFT DESIGN 1</td>
<td>Prerequisite: 45116 or 28476 or 45157 or 28446</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45400</td>
<td>INDUSTRIAL TRAINING</td>
<td></td>
<td>B.Sc.</td>
<td>0</td>
</tr>
<tr>
<td>45401</td>
<td>COMPOSITE MATERIALS</td>
<td>Prerequisite: 45133 or 28262</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45402</td>
<td>HELICOPTER AERODYN</td>
<td>Prerequisite: 45115</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45403</td>
<td>EXPERIMENTAL AERODYN</td>
<td>Prerequisite: 45115</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45404</td>
<td>PROPELLER THEORY</td>
<td>Prerequisite: 45116 or 28476</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45405</td>
<td>VISCOS FLOW</td>
<td>Prerequisite: 45115 or 28487</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45406</td>
<td>INTRO TO CFD</td>
<td>Prerequisite: 45119 or 45116</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45407</td>
<td>ORBITAL MECHANICS</td>
<td>Prerequisite: 45113 or 22034 and 28567</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45408</td>
<td>INTERNAL COMB ENGINE</td>
<td>Prerequisite: 45134 or 28161</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45409</td>
<td>FUEL & COMBUSTION</td>
<td>Prerequisite: 45134 or 28161</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45410</td>
<td>ROCKET PRINCIPLES</td>
<td>Prerequisite: 45117 or 28482</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45411</td>
<td>TURBOMACHINERIES</td>
<td>Prerequisite: 45125 or 28162 and 45116 or 28476</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45412</td>
<td>INDUSTRIAL MANAGMENT</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45413</td>
<td>SATELLITE SYSTEMS</td>
<td>Prerequisite: 45135 or 28416</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45414</td>
<td>AUTO SYS IN SPACE</td>
<td>Prerequisite: 45135 or 28416</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45415</td>
<td>MATERIALS & CONSTR METDS</td>
<td>Prerequisite: 45133 or 28262</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45416</td>
<td>PRECISION INSTRUMENT 1</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45417</td>
<td>MICROPROCESSOR 1</td>
<td>Prerequisite: 25091</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45418</td>
<td>INTRO FINITE ELEMENT METD</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45419</td>
<td>AVIONICS</td>
<td></td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45420</td>
<td>AEROSPACE TECH TRANSFER</td>
<td></td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------</td>
<td>-------------------------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45421</td>
<td>STRENGTH OF MATERIALS 2</td>
<td>Prerequisite: 45133</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45422</td>
<td>PILOT TRAINING</td>
<td></td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45424</td>
<td>VISCOUS FLOW</td>
<td>Prerequisite: 45124</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45425</td>
<td>INTRO MISSILE DESIGN</td>
<td></td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45426</td>
<td>MANUFACTURING METHODS</td>
<td></td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45427</td>
<td>MACHINE DESIGN 1</td>
<td>Prerequisite: 45133 or 28262</td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45428</td>
<td>LIQ ROCKET ENGINE DSGN</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45429</td>
<td>SPACE ENG PRIN</td>
<td>Prerequisite: 45132</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45430</td>
<td>ORG & ENG ETHICS</td>
<td></td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45431</td>
<td>AERO GAS TURB ENG DESIGN ENGINEERING ECONOMICS</td>
<td>Prerequisite: 45124 and 45134 or 28161 and 28461</td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45500</td>
<td>BSC PROJECT</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45510</td>
<td>ADV MATH 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45511</td>
<td>ADV MATH 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45515</td>
<td>ADV NUMERICAL METHODS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45520</td>
<td>CONTINUM MECHANICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45525</td>
<td>PERTURBATIONS THEORY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45530</td>
<td>ENERGY METHODS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45531</td>
<td>CONTINUOUS SYS VIBRATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45532</td>
<td>NONLINEAR VIBRATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45535</td>
<td>SELF STUDY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>----------------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45536</td>
<td>RESEARCH METHODS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45540</td>
<td>AEROSPACE TECH MNGMT</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45541</td>
<td>STRATEGIC MNGMT IN AEROSP</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45545</td>
<td>ADV DYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45550</td>
<td>NON-THESIS RES PROJ</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45560</td>
<td>MSC THESIS</td>
<td></td>
<td>M.Sc.</td>
<td>6</td>
</tr>
<tr>
<td>45600</td>
<td>MSC SEMINAR</td>
<td></td>
<td>M.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45605</td>
<td>ADV THERMODYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45610</td>
<td>ADV FUEL & COMB</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45615</td>
<td>GAS DYNAMICS 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45616</td>
<td>GAS DYNAMICS 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45620</td>
<td>ADV TURBOMACHINERY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45622</td>
<td>NUM METH IN TURBOMACH</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45625</td>
<td>MISSILE AEROTHERMODYN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45630</td>
<td>COMBUSTION INSTABILITY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45635</td>
<td>ACOUSTICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45637</td>
<td>THERMOACOUSTICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45640</td>
<td>ADV HEAT TRANSFER</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45641</td>
<td>RADIATION HEAT TRANSFER</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45643</td>
<td>CONVECTION HEAT TRANSFER</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>----------------------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>45645</td>
<td>ADV PROPULSION PRIN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45699</td>
<td>SP TOPICS IN PROPULSION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45700</td>
<td>MSC PROJECT</td>
<td></td>
<td>M.Sc.</td>
<td>6</td>
</tr>
<tr>
<td>45705</td>
<td>ADV FLIGHT DYNAMICS 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45706</td>
<td>ADV FLIGHT DYNAMICS 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45710</td>
<td>ADV AUTOMATIC CONTROL</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45715</td>
<td>NAVIGATION & GUIDANCE 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45716</td>
<td>NAVIGATION & GUIDANCE 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45720</td>
<td>FLIGHT TEST PRINCIPLES</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45725</td>
<td>MISSILE FLIGHT DYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45730</td>
<td>CONTROL SYS DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45733</td>
<td>ADV AIRCRAFT DESIGN</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45734</td>
<td>MISSILE CONFIG DESIGN</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45735</td>
<td>FUZZY CONTROL</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45736</td>
<td>ADV CONCEPTS A/C DSGN</td>
<td>Prerequisite: 45118 and 45177</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45738</td>
<td>ADV. AIRCRAFT PERFORMANCE</td>
<td>Prerequisite: 45156</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45740</td>
<td>HELICOPTER FLIGHT DYN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45743</td>
<td>AERO GAS TURB ENG CONTROL</td>
<td>Prerequisite: 45117 and 45135</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45745</td>
<td>FLIGHT SIMULATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45746</td>
<td>DYNAMICAL SYSTEMS</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>----------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>45747</td>
<td>MODELING AEROSPACE DYN SYS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45748</td>
<td>NONLINEAR SYS ANALYSIS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45749</td>
<td>SYSTEM IDENTIFICATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45750</td>
<td>MULTIVARIABLE CONTROL</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45755</td>
<td>DIGITAL CONTROL</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45760</td>
<td>ADAPTIVE CONTROL</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45765</td>
<td>OPTIMAL CONTROL 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45766</td>
<td>OPTIMAL CONTROL 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45770</td>
<td>HEURISTIC OPTIM ALGORITHMS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45775</td>
<td>NEURAL NETWORKS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45777</td>
<td>APPL OF REMOTE SENSING</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45779</td>
<td>SPACE PROPULSIONS</td>
<td>Prerequisite: 45417</td>
<td>Both</td>
<td>3</td>
</tr>
<tr>
<td>45780</td>
<td>SPACECRAFT DYN & CONTR</td>
<td>Prerequisite: 45407</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45781</td>
<td>LAUNCH VEHICLE SYS DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45782</td>
<td>SATELLITE SYSTEM DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45783</td>
<td>ATT & ORBIT DETERMINATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45784</td>
<td>ADV ORBITAL MECHANICS</td>
<td>Prerequisite: 45407</td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45785</td>
<td>SPACE SYSTEMS ENGINEERING</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45799</td>
<td>SP TOPICS IN FLIGHT DYN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45805</td>
<td>ADV VISCOUS FLOW 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45806</td>
<td>ADV VISCOUS FLOW 2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45809</td>
<td>FLUID FLOW CONTROL</td>
<td>Prerequisite: 45805</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45810</td>
<td>TURBULENCE</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45811</td>
<td>SHEAR LAYER TURBULENCE</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45813</td>
<td>TURBULENCE SIMULATION</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45815</td>
<td>SUBSONIC AERODYNAMICS</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45816</td>
<td>SUPersonic AERODYNAMICS</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45817</td>
<td>HyperSONIC AERODYNAMICS</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45818</td>
<td>ADV AERODYNAMICS</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45820</td>
<td>UNSTEADY AERODYNAMICS</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45825</td>
<td>GRID GENERATION METHODS</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45830</td>
<td>CFD 1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45831</td>
<td>CFD 2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45832</td>
<td>FINITE ELEMTS METD IN FLUID</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45834</td>
<td>ADV HELICOPTER AERODYN</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45835</td>
<td>KINETIC THEORY OF GAS</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45836</td>
<td>AERODY OF WIND TURBINES</td>
<td>Prerequisite: 45115</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45837</td>
<td>INTAKE AERODYNAMICS</td>
<td>Prerequisite: 45116 and 45117</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45840</td>
<td>MICRO_NANO FLOWS</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45899</td>
<td>SP TOPICS IN AERODYN</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Appendix A - List of all AE Courses
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Name</th>
<th>Prerequisite & Corequisite</th>
<th>Level</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>45900</td>
<td>PHD THESIS</td>
<td></td>
<td>Ph.D.</td>
<td>24</td>
</tr>
<tr>
<td>45905</td>
<td>ADV STRUCTURAL ANALYSIS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45910</td>
<td>AEROELASTICITY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45915</td>
<td>ADV AIRCRAFT DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45920</td>
<td>FINITE ELEM METHOD 1</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45921</td>
<td>FINITE ELEM 2</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45923</td>
<td>BOUNDARY ELEMENT METHOD</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45925</td>
<td>ADV STRUCTURAL DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45930</td>
<td>ADV COMPOSITE MATERIALS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45932</td>
<td>SPACE STRUCTURAL MATERIALS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45935</td>
<td>FRACT FATIG CREEP</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45937</td>
<td>MECH BEHAVIOR OF MAT</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45938</td>
<td>NANO MECHANICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45940</td>
<td>METALLURGY IN MANUF</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45945</td>
<td>ADV MACHINE DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45946</td>
<td>ADV COMPUTATIONAL DYN</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45947</td>
<td>SHELL & PLATE THEORY</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
<tr>
<td>45950</td>
<td>ADV OPTIMIZATION</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45951</td>
<td>MULTIPHASE FLOWS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45955</td>
<td>STRUCTURAL DYNAMICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Name</td>
<td>Prerequisite & Corequisite</td>
<td>Level</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>----------------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45957</td>
<td>MODAL ANALYSIS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45960</td>
<td>ADV MAT & MANUF PROC</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45965</td>
<td>VISCOELASTICITY</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45970</td>
<td>JIG & FIXTURE DESIGN</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45973</td>
<td>EXP STRESS ANALYSIS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45975</td>
<td>FRACTURE MECHANICS</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45980</td>
<td>PHD THESIS</td>
<td></td>
<td>Ph.D.</td>
<td>24</td>
</tr>
<tr>
<td>45999</td>
<td>SP TOPICS IN AEROS STRUCT</td>
<td></td>
<td>M.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45AP0</td>
<td>ADVISOR PROFESSOR</td>
<td></td>
<td>B.Sc.</td>
<td>3</td>
</tr>
<tr>
<td>45AP2</td>
<td>ADVISOR PROFESSOR</td>
<td></td>
<td>B.Sc.</td>
<td>2</td>
</tr>
<tr>
<td>45TA0</td>
<td>TEACHING ASSISTANT</td>
<td></td>
<td>Ph.D.</td>
<td>3</td>
</tr>
</tbody>
</table>