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Foreword

To the First English Edition

’
Boundary:layer theory is the cornerstone of our knowledge of the flow of air
and other fluids of small viscosity under circumstances of interest in many engineer-
ing applications. Thus many complex problems in serodynamics have been clarified
by a study of the flow within the boundary layer and its effect on the general flow
around the body. Such problems include the variations of minimum drag and
maximum 1ift of airplane wings with Reynolds number, wind-tunnel turbulence,
and other parameters. Bven in those cases where a complete mathematical analysis
is at present impracticable, the boundary-layer concept has been extraordinarily
froitful and useful.

The development of boundary-layer theory during its first fifty years is a fas-
cinating illustration of the birth of a new concept, its slow growth for many years
in the hands of its creator and his associates, its belated acceptance by others, and
the subsequent almost exponential rise in the number of contributors to its further

development.

The first decade following the classical paper of Prandtl in 1904 brought forth
fewer than 10 papers by Prandti and his students, a rate of about one paper per
year. During the past year over 100 papers were published on various aspects of
boundary-layer theory and related experiments. The name of Il. Schlichting first
appears in 1930 with his doctoral thesis on the subject of wake flow. Shortly there-
after Schlichting devoted major effort to the problem of the stability of laminar
houndary-layer flow.

My own interest in the experimental aspects of boundary-layer flow began in
the late twenties. With the appearance of Schlichting’s papers intensive altempts
were made to find the ampliGed disturbances predicted by the theory. For 10 years
the experimental results not only failed to confirm this theory but supported the
idea that transition resulted from the presence of turbulence in the (ree air stream
as described in a theory set forth by G. I. Taylor. Then on a well-remembered day
in August, 1940, the predicted waves were seen in the flow near a flat plate in a
wind tunnel of very low turbulence. The theory of stability described in the papers
of Tollmien and Schlichting was soon confirmed quantitatively as wellasgualitatively.

German periodicals available in the United States after the war referred.to a
series of lectures by Schlichting on boundary-layer theory which had been published
in 1942. This document of 279 pages with 116 figures was not available for some
time. An English translation was given limited distribution as NACA Technical
Memorandum No. 1217 in 1949. These lectures were completely rewritten to inch}de
material previously classified, confidential, or secret from Germany and other countries.



xvi Foreword

The result was the book of 483 pages and 295 figures published in 1951 in the German
language. When this book became known to research workers and educators in
the United States, there was an immediate request from several quarters for an Eng-
lish translalion, since no comparable book was available in the English language.

The technical content of the present English edition is described in the author’s
preface. ‘The emphasis is on the fundamental physical ideas rather than on mathe-
matical refinement. Methods of theorctical analysis are set forth along with such
experimental data as are pertinent to define the regions of applicability of the
theoretical results or to give physical insight into the phenomena.,

Acronautical engincers and rescarch scientists owe a debt of gratitude to
Professor Schilichting for this timely review of the present state of boundary-layer
theory.

Washington 1. C., December 1954 Hugh L. Dryden

Author’s Preface to the Seventh (English) Edition

The sixth (Inglish) edition of this book appeared in 1968; it differed very little
from the fifth (German) cdition of 1965. The first (German) edition of this book was
published in 1951. In the time interval between 1951 and 1968 an English odition
always followed a German edition. All translations have been prepared by Professoy
Kestin in an accomplished fashion.

When I deeided in 1975 to write a new edition of this book I came to the con-
clusion that the preeceding sequence of a German edition followed by an English edition
was no longer practicable. The reason for it was the heavily inereased cost of printing.
Consequently, I suggested to the two publishing companies, G. Braun in Karlsruhe
and McGraw-Hill in New York, to produce a new edition only in the English language.
I express my thanks to both Publishers for their consent.

As in the previous editions, T attempted this time also to seleet for inclusion the
most important contributions from among the abundant crop that appearced in the
meantime in the ficld of boundary-layer theory, without, however, altering the basice
structure of my book. T hope that the principal thrust of the book remained intact,
namely the intent to emphasize and to present theorctical considerations in a form
accessible to engineers.

The subdivision of the book into four parts (Fundamental laws of motion of a
viscous fluid; Laminar boundary layers; Transition; Turbulent boundary layers)
has been retained. Concerning the additions I wish to mention a few. Owing to the
advent of large electronic computers it became possible to tackle many problems
that were considered unsolvable in the past. These include numerical solutions of the
Navier-Stokes equations for moderately large Reynolds numbers (Chap. 1V), nume-
rical integration of the boundary-layer equations for laminar and turbulent flows
{Chap. 1X), as well as the explicit nwwmerical integration of the Orr-Sommerfeld
equation of the theory of stability of laminar boundary layers (Chap. XVI). An-
other subject newly taken into account arc exact solutions of the Navier-Stokes
cquations for the non-steady stagnation flow (Chap. V), the theory of the lIaminar
boundary layer of sccond order (Chap. VI and 1X). The scetions on the caleulation of
two-dimensional, incompressible, turbulent boundary layers (Chap. XXIl), on the
stability of laminar boundary layers with compressibility and heat-transfer cflects
{Sec. XV1Ie), and on losses in cascade Hows {(Chap. XXV) have been completely
revised.



xviil Author’s Preface to the Seventh (English) Edition

Along with this new material, T fecl that I ought to mention the topics which I
specifically omitted to include. I do not discuss the effect of chemical reactions on
flow processes in boundary layers as they oceur in the presence of hypersonic flow.
The same applies to boundary layers in magneto-fluid-dynamics, low-density flows
and flows of non-Newtonian fluids. I still thought that T ought to refrain from giving
an exposition of the statistical theory of turbulence in this edition, as in the previous
ones, beeause nowadays there are available other, good presentations in book form.

Once again, the lists of references have been expanded considerably in many
chapters. The number of illustrations increased by about 65, but 20 old ones have been
omitted; the number of pages increased by about 70. In spite of this, I hope that
the original character of this book has been retained, and that it still can provide
the reader with a bird’s-eye view of this important branch of the physics of fluids.

As I worked on the new manuscript I once more enjoyed the vigorous assistance
that I received from several of my professional colleagues. Professor K. Gersten con-
tributed sections on boundary layers of second order to the part on laminar boundary
layers (Secs. VIIf and IXj). This is a special field which he successfully worked out
in recent years. Professor T. K. Fanneloep contributed the completely reformulated
section on the numerical integration of the boundary-layer equations included in
See. IXi. In the part on turbulent boundary layers, Professor E. Truckenbrodt
provided me with a new version of the largest portion of Chapter XXII on two-
dimensional and rotationally symmetric boundary layers. Dr. L. M. Mack of the
California Institute of Technology was good enough to contribute a new section on
the stability of boundary layers in supersonic flow, Sec. XVIIe. Dr. J. C. Rotta
thoroughly reviewed Part I on turbulent boundary layers and made many additions
to it. For the Russian literature Treceived much help from Professor Mikhailov. The
translation was once again entrusted to Professor J. Kestin’s competent pen. I ex-
press iy sincere thanks to all those gentlemen for their valuable cooperation.

I should also like to repeat my acknowledgement of the help I received from
several professional friends when I worked on the fifth (German) edition. Naturally,
their contributions have now been retained for the seventh edition. This is the ex-
tensive contribution on compressible laminar boundary layers in Chapter XITI written
by Dr. F.W. Ricgels, Professor K. Gersten’s section on thermal boundary layers in
Chapter X1I and Dr. J.C. Rotta's text on compressible turbulent boundary layers in
Chapter XXIII.

I express my thanks to Frau Gerda Wolf, Frau Hilde Kreibohm and Mrs. Leslie
Giacin for the careful preparation of the clear copy of the manuscript; Frau Gerda
Wolf was also very helpful for me in the library. Messrs. Rotta, Hummel and Starke
were kind enough to assist with the reading of the proofs.

Last, but not. Ieast, thanks are due to Verlag Braun for their willingness to accede
to my wishes and for the pleasing appearance of the book.

Goettingen, August 1978 Hermann Schlichting

Translator’s Preface to the Seventh (English) Edition

The present is the fourth edition in the English language of Professor II. Schlich-
ting’s “‘Grenzschicht-Theorie”. Once again, the new edition was prepared in close
cooperation with the Author whom I visited several times in Gocettingen to finalize
the contents and the wording. I wish to thank Professor Schilichting for his hospitality
and Messrs. McGraw-11ill for partial financial assistance in connexion with these trips.

This time there was no German printed edition and the modifications introduced
by the author were transmitted directly to me.

T owe a debt of gratitude to Professor H. E. Khalifa for his help in the task of
proof-reading. My wife, Alicia, prepared the authors’ and the subject indexes and
competently typed them under difficult circumstances. My secretary, Mrs. Giacin in
Providence, and Mrs. Kreibohm in Goettingen expertly typed the manuscript; 1
express to them my sincere thanks for their patience. Both publishers, Messrs.
G. Braun of Karlsruhe and Messrs. McGraw-Hill of New York, spared no trouble,
as on past occasions, in meeting our wishes regarding the production of the book.

Providence, Rhode Island, August 1978 J. Kestin



From Author’s Preface to the First (German) Edition

Since about the beginning of the current century modern research in the fickd
of fluid dynamics has achieved great successes and has been able to provide a the-
orctical clarification of observed phenomena which the seience of classieal hydro-
dynamies of the preceding century failed to do. Fssentially three branches of fluid
dynamics have become particularly well developed during the last fifty years; they
include boundary-layer theory, gas dynamies, and acrofoil theory. The present book
is concerned with the branch known as boundary-layer theory. This is the oldest
branch of modern fluid dynamics; it was founded by I. Prandtl in 1904 when he
succeeded in showing how flows involving fluids of very small viscosity, in particular
water and air, the most important ones from the point of view of applications, can
be made amenable to mathematical analysis. This was achioved by taking the effeets
of friction into account only in regions where they are cssential, namely in the thin
boundary layer which exists in the immediate neighbourhood of a solid body. This
concept made it possible to clarify many phenomena which oceur in flows and which
had previously been incomprehensible. Most important of all, it has become possible
to subject problems connected with the occurrence of drag to a theoretical analysis.
The science of aeronautical engineering was making rapid progress and was soon
able to utilize these theoretical results in practical applications. It did, furthermore,
pose many problems which could be solved with the aid of the new boundary-layer
theory. Aeronautical engincers have long sinece made the concept of a boundary
layer one of everyday use and it is now unthinkable to do without it. In other ficlds
of machine design in which problems of flow occur, in particular in the design of
turbomachinery, the theory of boundary layers made much slower progress, but
in modern times these new concepts have come to the fore in such applications as well.

The present book has been written prineipally for engineers. It is the outcome
of a course of lectures which the Author delivered in the Winter Semester of 1941/42
for the scientific workers of the Acronautical Rescarch Institute in Braunschweig. The
subject matter has been uatilized after tho war in many special lectures held at the
Iingineering University in Braunschweig for students of mechanical engincering and
physica. Dr. H. Hahnemann prepared a sct of lecture notes after the first series
of lectures had been given. These were read and amplified by the Author. They were
subsequently published in mimeographed form by the Office for Scientific Docu-
mentation (Zentrale fiir wissenschaftliches Berichtswesen) and distributed to a
limited circle of interested scientific workers.

Several years after the war the author decided completely to re-edit this older
compilation and to publish it in the form of a book. The time scemed particularly
propitious becausc it appeared ripe for the publication of a comprehensive book,
and because the results of the research work carried out during the last ten to twenty
years rounded off the whole field.



xxii IFrom Author’s Preface to the First (German) Edition

The book is divided into four main parts. 'The first part contains two intro-
ductory chapters in which the fundamentals of boundary-layer theory are expounded
without the use of mathematics and then procceds to prepare the mathematical
and physical justification for the theory of laminar boundary layers, and includes
the theory of thermal boundary layers. The third part is concerned with the pheno-
menon of transition from laminar to turbulent flow (origin of turbulence), and the
fourth part is devoted to turbulent flows. It is now possible to take the view that
the theory of laminar boundary layers is complete in its main outline. The physical
relations have been completely clarified; the methods of calculation have been
largely worked out and have, in many cases, been simplificd to such an extent that
they should present no difficulties to engineers. In discussing turbulent flows use
has been made essentially only of the semi-empirical theorics which derive from
Prandtl’s mixing length. Tt is true that according to present views these theories
possess a number of shortcomings but nothing superior has so far been devised
to take their place, nothing, that is, which is useful to the engincer. No account
of the statistical theories of turbulence has been included because they have
not yet attained any practical significance for engineers.

As intimated in the title, the emphasis has been laid on the theoretical treatment
of problems. An attempt has been made to bring these considerations into a form
which can be easily grasped by engincers. Only a small number of results has been
quoted from among the very voluminous experimental material. They have been
chosen for their suitability to give a clear, physical insight into the phenomena and
to provide direct verification of the theory presented. Some examples have been
chosen, namely those associated with turbulent flow, because they constitute the
foundation of the semi-empirical theory. An attempt was made to demonstrate
that essential progress is not made through an accumulation of extensive experimental
results but rather through a small number of fundamental experiments backed by
theoretical considerations. ‘

Braunschweig, October 1950 Hermann Schlichting

Introduction

Towards the end of the 19th century the science of fluid mechanics began to
develop in two dircctions which had practically no points in common. On the one
side there was the science of theoretical hydrodynamics which was evolved from
Euler’s equations of motion for a frictionless, non-viscous fluid and which achieved a
high degree of completeness. Since, however, the results of this so-called classical
science of hydrodynamics stood in glaring contradiction to experimental results — in
particular as regards the very important problem of pressure losses in pipes and
channels, as well as with regard to the drag of a body which moves through a mass
of fluid — it had little practical importance. For this reason, practical engincers,
prompted by the need to solve the important problems arising from the rapid
progress in technology, developed their own highly empirical science of Aydraulics.
The science of hydraulics was based on a large number of experimental data and
differed greatly in its mecthods and in its objects from the science of theoretical
hydrodynamics.

At the beginning of the present century L. Prandtl distinguished himself by
showing how to unify these two divergent branches of fluid dynamics. He achieved
a high degree of correlation between theory and experiment and paved the way
to the remarkably successful development of fluid mechanics which has taken place
over the past seventy years. It had been realized even before Prandtl that the discre-
pancies between the results of classical hydrodynamics and experiment were, in
very many cases, due to the fact that the theory neglected fluid friction. Moreover,
the complete equations of motion for flows with friction (the Navier-Stokes equa-
tions) bad been known for a long time. However, owing to the great mathematical
difficulties connected with the solution of these equations (with the exception of a
small number of particular cases), the way to a theoretical treatment of viscous
fluid motion was barred. IFurthermore, in the casc of the two most important fluids,
namely water and air, the viscosity is very small and, consequently, the. forces
due to viscous friction are, generally speaking, very small compared with the
remaining forces (gravity and pressure forces). For this reason it was very difficult
to comprehend that the frictional forces omitted from the classical theory influenced
the motion of a fluid to so large an extent.

In a paper on “Fluid Motion with Very Small Friction”, read before the Mathe-
matical Congress in Ieidelberg in 1904, L. Prandtl{ showed how it was possible to
analyze viscous flows precisely in cases which had great practical importance. With

t L. Prandtl, Uber Fliissigkeitsbewegung bei schr klciner Reib —Lroc. Third Intern. Math.
Congress, Heidelberg 1904, pp. 484 —491; see also L. Pran ﬁ&"ﬂm elte Abhandlungen zur
angewandten Mechanik, Hydro- und Acrodynamik (Col d Worl&“ d. by W. Tolhuien,
H. Schiichting and H. Gortler, vol. 1T pp. 575 —584, Spr/ or[ym,)m I{]p,l.
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2 Introduction

the aid of theoretical considerations and several simple experiments, he proved that
the flow about a solid body can be divided into two regions: a very thin layer in the
neighbourhood of the body (boundary layer) where friction plays an essential part,
and the remaining region outside this layer, where friction may be neglected. On
the basis of this hypothesis Prandtl succceded in giving a physically penctrating
explanation of the importance of viscous flows, achicving at the same time n maximum
degree of simplification of the attendant mathematical difficulties. The theoretical
considerations were even then supported by simple experiments performed in a
small water tunnel which Prandtl built with his own hands. He thus took the first
step towards a reunification of theory and practice. This boundary-layer theory proved
extremely fruitful in that it provided an cffective tool for the development of fluid
dynamies. Since the beginning of the current century the new theory has been deve-
loped at a very fast rate under the additional stimulus obtained from the recently
founded science of acrodynamics. Tn a very short time it became one of the foundation
stones of modern fluid dynamics together with the other very important develop-
ments — the acrofoil theory and the science of gas dynamics.

In more recent times a good deal of attention has been devoted to studies of the
mathematical justification of boundary-layer theory. According to these, boundary-
layer theory provides us with a first approximation in the framework of a more
general theory doesigned to calculate asymptotic expansions of the solutions to the
complete equations of motion. The problem is reduced to a so-called singular pertur-
bation which is then solved by the method of matched asymptotic expansions.
Boundary-layer theory thus provides us with a classic example of the application
of the method of singular perturbation. A general presentation of perturbation
methods in fluid mechanics was prepared by M. Van Dyket. The basis of these
methods can be traced to L. Prandtl’s early contributions.

The boundary-layer theory finds its application in the caleulation of the skin-
friction drag which acts on a body as it is moved through a fluid: for example the
drag expericneed by a flat plate at zero incidence, the drag of a ship, of an acroplane
wing, aircraft nacclle, or turbine blade. Boundary-layer flow has the peculiar property
that under certain conditions the flow in the immediate neighbourhood of a solid
wall becomes reversed causing the boundary layer to separate from it. This is accom-
panicd by a more or less pronounced formation of eddies in the wake of the body.
Thus the pressure distribution is changed and differs markedly from that in a
frictionless strcam. The deviation in pressure distribution from the ideal is the
cause of form drag, and its calculation is thus made possible with the aid of boundary-
layer theory. Boundary-layer theory gives an answer to the very important question
of what shape must a body be given in order to avoid this detrimental separation.
Separation can also occur in the internal flow through a channel and is not confined
to external flows past solid bodies. Problems conneeted with the flow of fluids
through the channels formed by the blades of turbomachines (rotary compressors
and turbines) can also be treated with the aid of boundary-layer theory. Furthermore,
phenomena which oceur at the point of maximum lift of an acrofoil and which are
associated with stalling can be understood only on the hasis of boundary-layer

t M. Van Dyke, Perturbation nicthods in fluid mechanics, Academic Press, 1964.
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theory. Finally, problems of heat transfer between a solid body and a fluid (gas)
flowing past it also belong to the class of problems in which bonndary-layer pheno-
mena play a deeisive part.

At first the boundary-layer theory was developed mainly for the ease of laminar
flow in an incompressible fluid, as in this enasc the phenomenological hypothesis
for shearing stresses alveady eoxisted in the form of Stokes’™s faw. Phis topic was
subsequently developed in a large number of rescarch papers and reached such a
stage of perfection that at present the problem of laminar low can be considered
to have been solved in its main oulline. Later the theory was extended to include
turbulent, incompressible boundary layers which are more important from the point
of view of practical applications. 1t is truc that in the case of turbulent flows O. Rey-
nolds introduced the fundamentally important concept of apparent, or virtual turbu-
lent stresses as far back as 1880. However, this concept was in itself insufficient to
make the theoretical analysis of turbulent flows possible. Great progress was achicved
with the introduction of Prandtl’s mixing-length theory (1925) which, together with
systematic experiments, paved the way for the theoretical treatment of turbulent
flows with the aid of boundary-layer theory. However, a rational theory of fully
developed turbulent flows is still nonexistent, and in view of the extreme com-
plexity of such flows it will remain so for a considerable time. One cannot even be
certain that science will ever be successful in this task. In modern times the pheno-
mena which occur in the boundary layer of a compressible flow have become the
subject of intensive investigations, the impulse having been provided by the rapid
increase in the speed of flight of modern aireraft. In addition to a velocity boundary
layer such flows develop a thermal boundary layer and its existence plays an im-
portant part in the process of heat transfer between the fluid and the solid body
past which it flows. At very high Mach numbers, the surface of the solid wall becomes
heated to a high temperature owing to the production of frictional heat (“thermal
barrier””). This phenomenon presents a difficult analytic problem whose solution
is important in aireraft design and in the understanding of the motion of satellites.

The phenomenon of transition from laminar to turbulent flow which is fundamen-
tal for the science of fluid dynamics was first investigated at the end of the 19th cen-
tury, namely by O. Reynolds. In 1914 L. Prandtl carried out his famous experiments
with spheres and succeeded in showing that the flow in the boundary layer can also be
either Jaminar or turbulent and, furthermore, that the problem of separation, and
hence the problem of the calculation of drag, is governed by this transition. Theoreti-
cal investigations into the process of transition from laminar to turbulent flow are
based on the acceptance of Reynolds’s hypothesis that the latter oceurs as a con-
sequence of an instability developed by the laminar boundary layer. Prandtl initiated
his theoretical investigation of transition in the year 1921; after many vain cfforts,
success came in the year 1929 when W. Tollmicn computed theorctically the critical
Reynolds number for transition on a flat plate at zero incidence. However, more
than ten years were {o pass before Tollmien’s theory could be verified through the
very carcful experiments performed by 11. L. Dryden and his coworkers. The stability
theory is capable of taking into account the effcet of a number of parameters (pressure
gradient, suction, Mach number, transfer of heat) on transition. This theory has
found many important applications, among them in the design of acrofoils of very
low drag (laminar aerofoils).
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Modern investigations in the field of fluid dynamics in general, as well as in
the ficld of boundary-layer rescarch, are characterized by a very close relation
between theory and experiment. The most important steps forwards have, in most
cases, been taken as a result of a small number of fundamental experiments backed
by theoretical considerations. A review of the devclopment of boundary-layer
theory which stresses the mutual cross-fertilization between theory and experiment
is contained in an article written by A. Betzf. For about twenty years after its
inception by L. Prandtl in 1904 the boundary-layer theory was being developed
almost exclusively in his own institute in Goettingen. One of the reasons for this
state of affairs may well have been rooted in the circumstance that Prandtl’s first
publication on boundary-layer thcory which appeared in 1904 was very difficult to
understand. This period can be said to have ended with Prandtl’'s Wilbur Wright
Meniorial Lecture® which was delivered in 1927 at a meeting of the Royal Aeronautical
Society in London. In later years, roughly since 1930, other research workers, par-
ticularly those in Great Britain and in the U.S.A,, also took an active part in its
development. Today, the study of boundary-layer theory has spread all over the
world ; together with other branches, it constitutes one of the most important pillars
of fluid mechanics.

The first survey of this branch of scicnce was given by W. Tollmien in 1931
in two short articles in the “Ilandbuch der Experimentalphysik” 3. Shortly after-
wards (1935), Prandtl published a comprchensive presentation in “Acrodynamic
Theory” edited by W. F. Durand®. During the intervening four decades the volume
of research into this subject has grown enormously§. According to a review published
by II. L. Dryden in 1955, the ratc of publication of papers on boundary-layer
theory reached onc hundred per annum at that time. Now, some twenty years later,
this rate has more than tripled. Like several other fields of research, the theory
of boundary layers has reached a volume which is so enormous that an individual
scientist, even one working in this ficld, cannot be expected to master all of its
specialized subdivisions. It is, therefore, right that the task of describing it in a
modern handbook has been entrusted to several authors?. The historical develop-
ment of boundary-layer theory has recently been traced by I. Tani*.

1 A. Betz, Zicle, Wege und konstruktive Auswertung der Stromungsforschung, Zeitschr. VDI 91,
(1949) 253.

L. Prandt], The generation of vortices in fluids of gmall viscosity (15th Wilbur Wright Memorial
Lecture, 1927). J. Roy. Acro. Soc. 31, 721 —741 (1927).

Cf. the bibliography on p. 780. )

L. Prandtl, The mechanics of viscous fluids. Acrodynamic Theory (W. F. Durand, ed.), Vol. 3,
34 208, Berlin, 1935, '

§ H. Schlichting, Some developments of boundary-layer research in the past thirty years (The
Third Lanchesier Memorial Lecture, 1959). J. Roy. Aero. Soc. 64, 63—80 (1960).

See also: H. Schlichting, Recent progress in houndary-layer research (The 37th Wright Brothers
Memorial Lecture, 1973). ATAA Journal 12, 427 --440 (1974).

f. Tani, History of boundary-layer research. Annual Rev. of Fluid Mechanies 9, 87— 111 (1977).
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Part A. Fundamental laws of motion for a viscous fluid

CHAPTER 1
QOutline of fluid motion with friction

a. Real and perfect fluids

Most theoretical investigations in the ficld of fluid dynamics arc based on the
concept of a perfeet, i. e. frictionless and incompressible, fluid. In the motion of
such a perfect fluid, two contacting layers experience no tangential forces (shearing
stresses) but act on each other with normal forces (pressures) only. This is equivalent
to stating that a perfect fluid offers no internal resistance to a change in shape. The
theory deseribing the motion of a perfect fluid is mathematically very far developed
and supplies in many cases a satisfactory description of real motions, such as e. g.
the motion of surface waves or the formation of liquid jets in air. On the other hand
the theory of perfect fluids fails completely to account for the drag of a body. In this
connexion it leads to the statement that a body which moves uniformly through a
fluid which extends to infinity experiences no drag (d’Alembert’s paradox).

This unacceptable result of the theory of a perfect fluid can be traced to the fact
that the inner layers of a real fluid transmit tangential as well as normal stresses,
this being also the case near a solid wall wetted by a fluid. These tangential or friction
forces 1 a real fluid arc connected with a property which is called the viscosity of
the fluid.

Because of the absence of tangential forces, on the boundary between a perfect
fluid and a solid wall there exists, in general, a difference in relative tangential
velocities, 1. e. therce is slip. On the other hand, in real fluids the existence ol inter-
molecular attractions causes the fluid to adhere to a solid wall and this gives rise
to shearing stresses.

The existence of tangential (shearing) stresses and the condition of no slip near
solid walls constitute the essential differences between a perfect and a real fluid.
Certain fluids which are of great practical importance, such as water and air, have
very small coefficients of viscosity. In many instances. the motion of such fluids of
small viscosity agrees very well with that of a perfeet fluid, because in most cases the
shearing stresses are very small. For this reason the existence of viscosity is completely
neglected in the theory of perfect fluids, mainly because this introduces a far-reaching
simplification of the equations of motion, as a result of i extensive mathe-
matical theory becomes possible. Tt is, however, impm ss the fact that
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